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RLVR as a direct and effective post-training method: GRPO with R; = sign(D) - D(s;, s - _ : :
. direct and effective p g i =sign(D) - D(8;,8)  sign(p) =1 World Model Applications
Task-specific prediction metrics serve as verifiable rewards Otherwise
RLVR-trained world models can improve downstream tasks,
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World models across modalities (language and video): including policy evaluation and model predictive control.

Unified under a sequence modeling formulation Beyond its success in math and coding, RLVR can also improve LLMs’

performance on world modeling tasks involving verbal state transitions. ' Web Agent on ©.0 Real2Sim Evaluation of
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RL-trained world models enhance decision-making:

PO“C evaluation and model redictive Control Text Game State Prediction Web Page Stage Prediction Open Drawer Close Drawer
] 1.0 ] - R
4 P Success Rate: 3% = ame [
071 Training Rewards o 0.65 4 SFT- 12 @60/0 % . : iif/;mg::j : ii\s/;[v\llsgrelclj
cc? 0.6 - —=— Test Acc. (Unchanged) O 060 - ° Ug) 00 1
§ 0.5 —=— Test Acc. (Changed) é’) 0.55 RLVR 14.29% B 047 i
. . . . . (&) -~ . g
Project Website: thuml.github.io/RLVR-World Q s g, o . (relatively +18.4%) 30> |
. ] i 0.0 - -
Code: glthUb .com/thuml/RLVR-World o3 W 045 —=— Test 00 02 04 06 08 10 00 02 04 06 08 10
0.2 0.40 T T T T T T Real Success Rate Real Success Rate

. : 0 100 200 300 0 250 500 750 1000 1250 1500 _ _ _
Datasets & Models: hf. co/collections/thuml/rlvr-world Training Steps Training Steps First work on world model-based robot policy evaluation!



