

Supported Policy Optimization for Offline Reinforcement Learning

Jialong Wu¹, Haixu Wu¹, Zihan Qiu², Jianmin Wang¹, Mingsheng Long^{1⊠} ¹School of Software, BNRist, Tsinghua University, China ²Institute for Interdisciplinary Information Sciences, Tsinghua University, China {wujialong0229,qzh11628}@gmail.com, whx20@mails.tsinghua.edu.cn {jimwang,mingsheng}@tsinghua.edu.cn

Jialong Wu

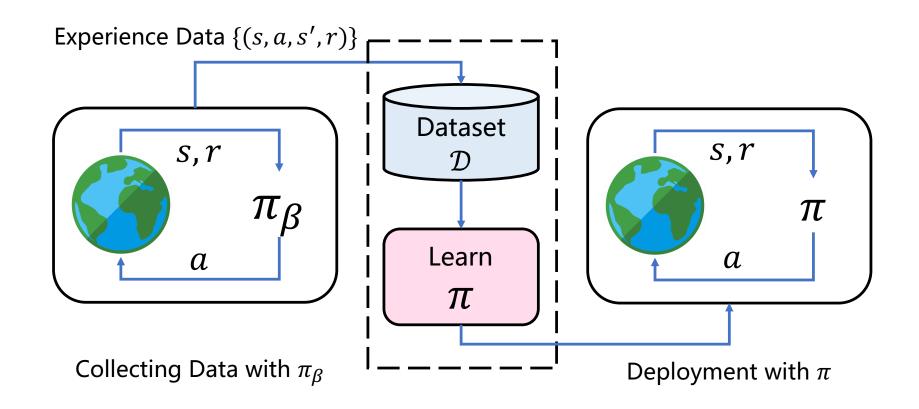
Haixu Wu

Zihan Qiu

Jianmin Wang

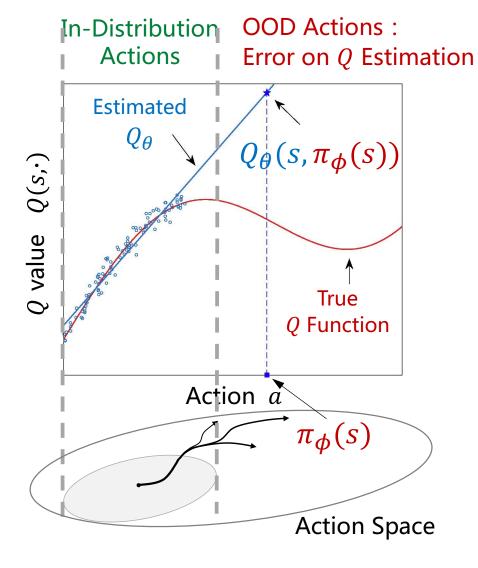
Mingsheng Long

Offline Reinforcement Learning



Eliminating the need to expensive or risky interactions with the live environment in practical scenarios

Extrapolation Error in Offline RL



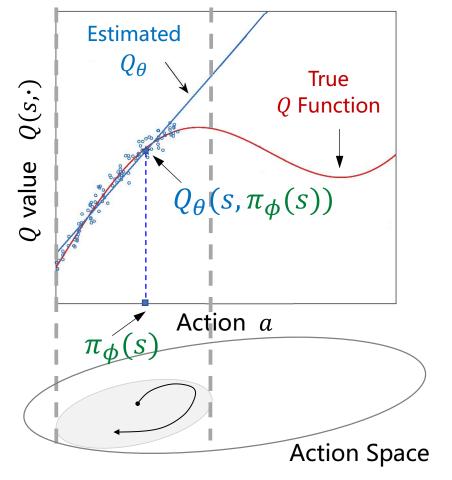
$$J_{\pi}(\phi) = \mathbb{E}_{s \sim \mathcal{D}} \left[\neg Q_{\theta} \left(s, \pi_{\phi}(s) \right) \right]$$

Extrapolation Error of Q Estimation

- Misleading policy gradient
- Error propagation through Bellman backups

Support Constraint in Offline RL

In-Distribution OOD Actions : Actions Error on *Q* Estimation



$$egin{aligned} &\min_{\phi} \quad J_{\pi}(\phi) = \mathbb{E}_{s\sim\mathcal{D}}\left[-Q_{ heta}\left(s,\pi_{\phi}(s)
ight)
ight] \ & ext{s.t.} \quad \pi_{\phi}(s) \in \left\{a:\pi_{eta}(a\mid s) > \epsilon
ight\} \quad orall s \end{aligned}$$

Support Constraint

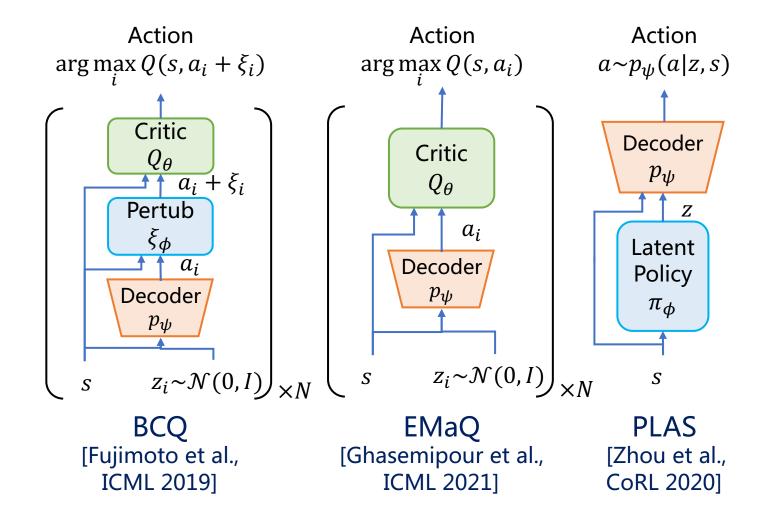
- Tradeoff between optimality and

extrapolation error [Kumar et al. NeurIPS 19]

Parameterization vs Regularization

Support Constraint via Parameterization

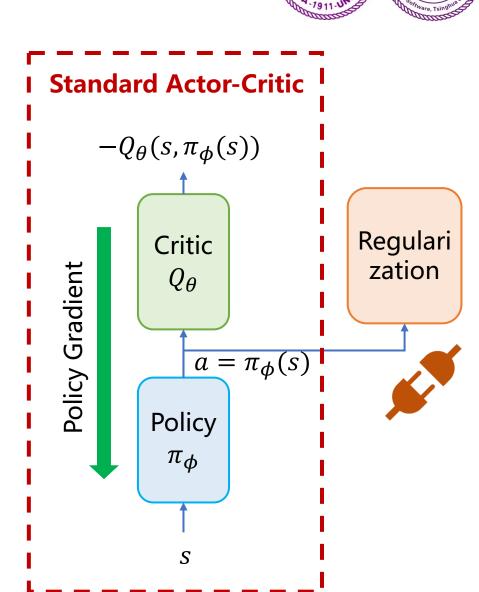
- Policy coupled to generative models
- Pros
 - Direct constraint
- Cons
 - Extra inference cost
 - Implementation difficulty
 - Complicates transfer of design techniques



Parameterization vs Regularization

Support Constraint via Regularization

- Penalize **divergence** between π and π_{β}
 - MMD [Kumar et al., 2019]
 - Wasserstein distance [Wu et al., 2019]
 - Behavior cloning term [Fujimoto & Gu, 2021]
- Pros
 - Pluggable design
- Cons
 - Mismatch the inherent density-based definition of support constraint



Parameterization vs Regularization

Support Constraint via Regularization

- Penalize **divergence** between π and π_{β}
 - MMD [Kumar et al., 2019]
 - Wasserstein distance [Wu et al., 2019]
 - Behavior cloning term [Fujimoto & Gu, 2021]
- Pros
 - Pluggable design
- Cons
 - Mismatch the inherent density-based definition of support constraint

Our Goal:

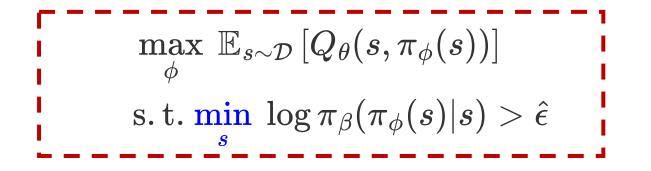
A **pluggable** offline

RL method that also

directly meets the

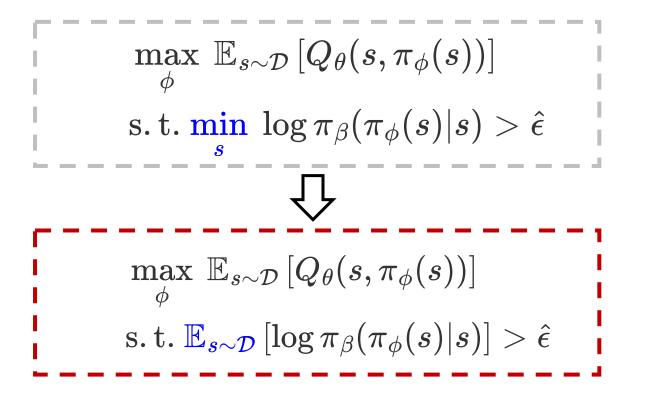
support constraint

Support Constraint via Behavior Density



Policy optimization with behavior density as constraint

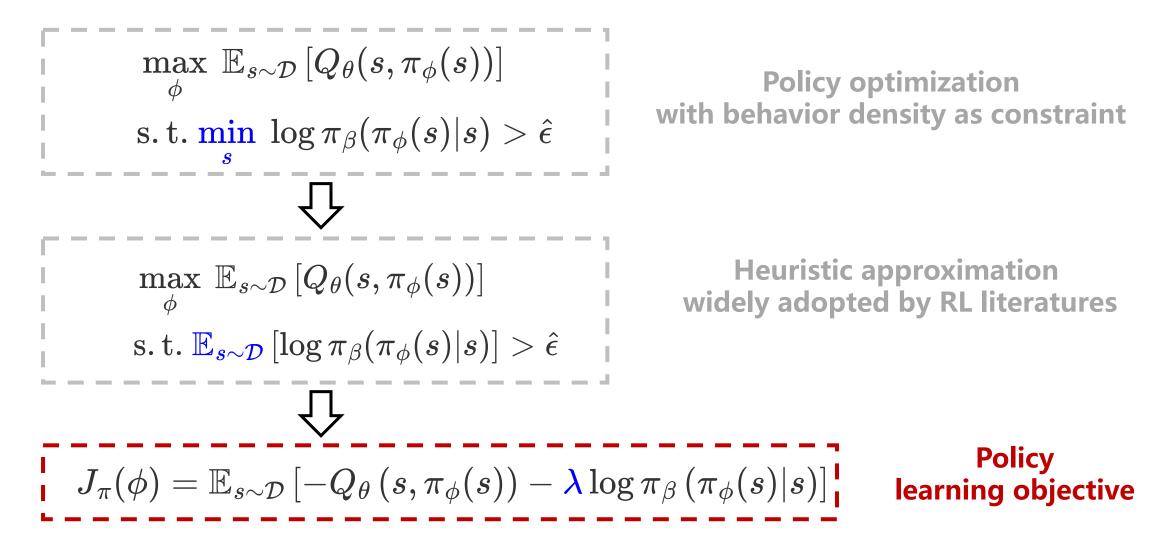
Support Constraint via Behavior Density



Policy optimization with behavior density as constraint

Heuristic approximation widely adopted by RL literatures

Support Constraint via Behavior Density



Conditional Variational Auto-Encoder (CVAE)

$$\pi_eta(a|s) = p_\psi(a|s) = \int p_\psi(a|z,s) p(z|s) \mathrm{d}z$$
 .

Deep Latent Variable Model $a \sim p_{\psi}(a|z,s)$ Decoder ψ

 ψ \uparrow $z \sim p(z|s) = \mathcal{N}(\mathbf{0}, I)$

S

Conditional Variational Auto-Encoder (CVAE)

$$\pi_eta(a|s) = p_\psi(a|s) = \int p_\psi(a|z,s) p(z|s) \mathrm{d}z$$

Optimization with evidence lower bound (ELBO)

$$\log p_{\psi}(a|s) \geq \mathbb{E}_{q_{\varphi}(z|a,s)} \left[\log \frac{p_{\psi}(a,z|s)}{q_{\varphi}(z|a,s)} \right]$$

= $\mathbb{E}_{q_{\varphi}(z|a,s)} \left[\log p_{\psi}(a|z,s) \right]$
- $\mathrm{KL} \left[q_{\varphi}(z|a,s) || p(z|s) \right]$
 $\stackrel{\mathrm{def}}{=} -\mathcal{L}_{\mathrm{ELBO}}(s,a;\varphi,\psi).$

Variational Auto-Encoder $a \sim p_{\psi}(a|z,s)$ Decoder ψ Conditional $z \sim q_{\varphi}(z|a,s)$ 0 Encoder S a

Density estimation with importance sampling [Rezende et al., ICML 2014]

$$\begin{split} \log p_{\psi}(a|s) &= \log \mathbb{E}_{q_{\varphi}(z|a,s)} \left[\frac{p_{\psi}(a,z|s)}{q_{\varphi}(z|a,s)} \right] \\ &\approx \mathbb{E}_{z^{(l)} \sim q_{\varphi}(z|a,s)} \left[\log \frac{1}{L} \sum_{l=1}^{L} \frac{p_{\psi}(a,z^{(l)}|s)}{q_{\varphi}(z^{(l)}|a,s)} \right] \\ &\stackrel{\text{def}}{=} \widehat{\log \pi_{\beta}}(a|s;\varphi,\psi,L). \end{split}$$

Variational Auto-Encoder $a \sim p_{\psi}(a|z,s)$ Decoder ψ Conditional $z \sim q_{\varphi}(z|a,s)$ 0 Encoder S a

Density estimation with importance sampling [Rezende et al., ICML 2014]

$$\begin{split} \log p_{\psi}(a|s) &= \log \mathbb{E}_{q_{\varphi}(z|a,s)} \left[\frac{p_{\psi}(a,z|s)}{q_{\varphi}(z|a,s)} \right] \\ &\approx \mathbb{E}_{z^{(l)} \sim q_{\varphi}(z|a,s)} \left[\log \frac{1}{L} \sum_{l=1}^{L} \frac{p_{\psi}(a,z^{(l)}|s)}{q_{\varphi}(z^{(l)}|a,s)} \right] \\ &\stackrel{\text{def}}{=} \widehat{\log \pi_{\beta}}(a|s;\varphi,\psi,L). \end{split}$$

Policy learning objective with density estimator

$$J_{\pi}(\phi) = \mathbb{E}_{s \sim \mathcal{D}}\left[-Q_{ heta}\left(s, \pi_{\phi}(s)
ight) - \lambda \widehat{\log \pi_{eta}}(\pi_{\phi}(s)|s; arphi, \psi, L)
ight]$$

Variational Auto-Encoder $a \sim p_{\psi}(a|z,s)$ Decoder U Conditional $z \sim q_{\varphi}(z|a,s)$ (n)Encoder S а

Supported Policy Optimization

Algorithm 1 Supported Policy Optimization (SPOT)Input: Dataset $\mathcal{D} = \{(s, a, r, s')\}$ // VAE Training

```
Initialize VAE with parameters \psi and \varphi
```

for t = 1 to T_1 do

```
Sample minibatch of transitions (s, a) \sim \mathcal{D}
```

Update ψ, φ minimizing $\mathcal{L}_{\text{ELBO}}(s, a; \varphi, \psi)$ in Eq. (7)

(1). Density Estimation with VAE

end for

// Policy Training

```
Initialize the policy network \pi_{\phi}, critic network Q_{\theta} and target network Q_{\bar{\theta}} with \bar{\theta} \leftarrow \theta
for t = 1 to T_2 do
```

```
Sample minibatch of transitions (s, a, r, s') \sim D
Update \theta minimizing J_Q(\theta) in Eq. (1)
```

```
Update \phi minimizing J_Q(\phi) in Eq. (1)
Update \phi minimizing J_{\pi}(\phi) in Eq. (9)
```

```
Update target network: \bar{\theta} \leftarrow \tau \theta + (1 - \tau)\bar{\theta}
```

(2). Actor-Critic

with Plugged Regularization

end for

Supported Policy Optimization

Algorithm 1 Supported Policy Optimization (SPOT)

Input: Dataset $\mathcal{D} = \{(s, a, r, s')\}$ // VAE Training Initialize VAE with parameters ψ and φ for t = 1 to T_1 do Sample minibatch of transitions $(s, a) \sim \mathcal{D}$ Update ψ, φ minimizing $\mathcal{L}_{\text{ELBO}}(s, a; \varphi, \psi)$ in Eq. (7) end for // Policy Training Initialize the policy network π_{ϕ} , critic network Q_{θ} and targe for t = 1 to T_2 do Sample minibatch of transitions $(s, a, r, s') \sim \mathcal{D}$ Update θ minimizing $J_Q(\theta)$ in Eq. (1) Update ϕ minimizing $J_{\pi}(\phi)$ in Eq. (9) Update target network: $\bar{\theta} \leftarrow \tau \theta + (1 - \tau) \theta$ end for

Practical Implementation

- Base algorithm: TD3
- Q normalization following
 TD3+BC [Fujimoto & Gu,
 NeurIPS 2021]
- Simpler density estimator with L = 1 (ELBO estimator)

Experimental Evaluation on D4RL-Gym-MuJoCo

State-of-the-art performance on locomotion tasks

Table 2: Performance of SPOT and prior methods on Gym-MuJoCo tasks. m = medium, m-r = medium-replay, m-e = medium-expert. For baselines, we report numbers directly from the IQL paper [25], which provides a unified comparison for "-v2" datasets. For SPOT, we report the mean and standard deviation for 10 seeds.

	BC	AWAC	DT	Onestep	TD3+BC	CQL	IQL	SPOT (Ours)
HalfCheetah-m-e-v2	55.2	42.8	86.8	93.4	90.7	91.6	86.7	86.9±4.3
Hopper-m-e-v2	52.5	55.8	107.6	103.3	98.0	105.4	91.5	99.3±7.1
Walker-m-e-v2	107.5	74.5	108.1	113.0	110.1	108.8	109.6	112.0±0.5
HalfCheetah-m-v2	42.6	43.5	42.6	48.4	48.3	44.0	47.4	58.4 ±1.0
Hopper-m-v2	52.9	57.0	67.6	59.6	59.3	58.5	66.2	86.0 ±8.7
Walker-m-v2	75.3	72.4	74.0	81.8	83.7	72.5	78.3	86.4 ±2.7
HalfCheetah-m-r-v2	36.6	40.5	36.6	38.1	44.6	45.5	44.2	52.2 ±1.2
Hopper-m-r-v2	18.1	37.2	82.7	97.5	60.9	95.0	94.7	100.2 ±1.9
Walker-m-r-v2	26.0	27.0	66.6	49.5	81.8	77.2	73.8	91.6 ±2.8
Gym-MuJoCo total	466.7	450.7	672.6	684.6	677.4	698.5	692.4	773.0±30.2

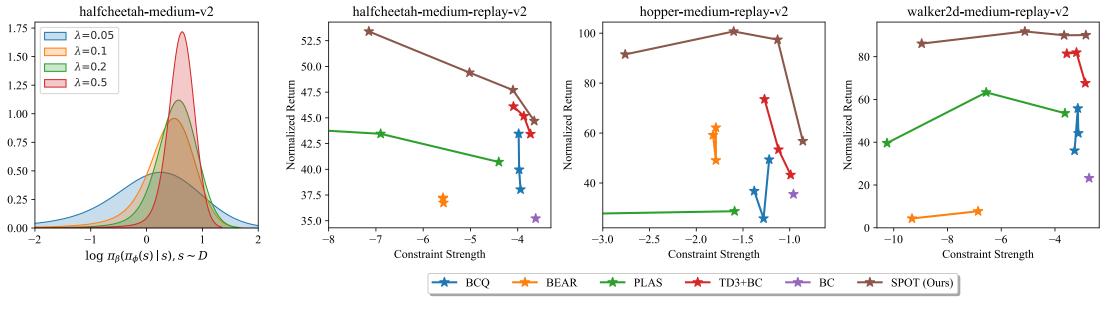
Experimental Evaluation on D4RL-AntMaze

Strong performance with a simple pluggable design

Table 3: Performance of SPOT and prior methods on AntMaze tasks. For baselines, we obtain the results using author-provided implementations on "-v2" datasets. For BCQ and BEAR, we report numbers from D4RL paper [6]. For SPOT, we report the mean and standard deviation for 10 seeds.

	BCQ	BEAR	BC	DT	TD3+BC	PLAS	CQL	IQL	SPOT (Ours)
umaze-v2	78.9	73.0	49.2	$54.2{\pm}4.1$	$73.0{\pm}34.0$	$62.0{\pm}16.7$	82.6±5.7	89.6±4.2	93.5 ±2.4
umaze-diverse-v2	55.0	61.0	41.8	$41.2{\scriptstyle\pm11.4}$	47.0 ± 7.3	45.4 ± 7.9	$10.2 {\pm} 6.7$	65.6 ±8.3	$40.7{\pm}5.1$
medium-play-v2	0.0	0.0	0.4	$0.0{\pm}0.0$	$0.0{\pm}0.0$	$31.4{\scriptstyle\pm21.5}$	$59.0{\scriptstyle\pm1.6}$	76.4 ±2.7	$74.7{\pm}4.6$
medium-diverse-v2	0.0	8.0	0.2	$0.0{\pm}0.0$	$0.2{\pm}0.4$	20.6 ± 27.7	$46.6{\scriptstyle\pm24.0}$	72.8 ± 7.0	79.1 ±5.6
large-play-v2	6.7	0.0	0.0	$0.0{\pm}0.0$	$0.0{\pm}0.0$	2.2 ± 3.8	16.4 ± 17.1	42.0 ±3.8	35.3 ± 8.3
large-diverse-v2	2.2	0.0	0.0	0.0 ± 0.0	$0.0{\pm}0.0$	$3.0{\pm}6.7$	3.2 ± 4.1	46.0 ±4.5	36.3±13.7
AntMaze total	142.8	142.0	91.6	95.4±15.5	120.2±41.7	164.6±84.3	218.0±59.2	392.4 ±30.5	359.6±39.7

Analysis on Support Constraint



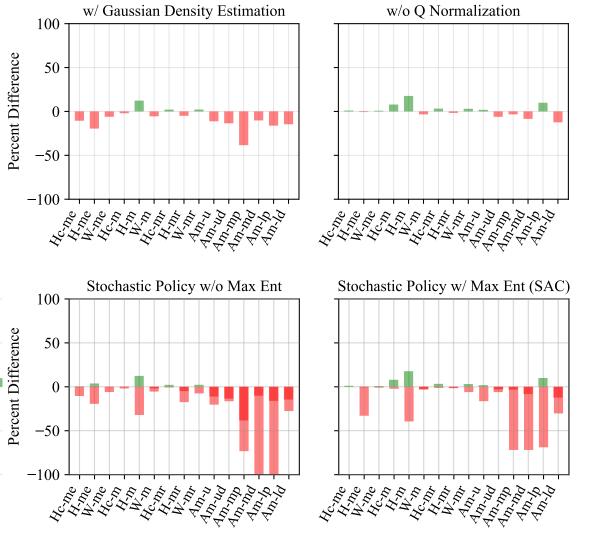
(a) Effect of λ .

(b) Tradeoff between constraint strength and optimality.

- Regularization weight λ effectively applies support constraint with different strength.
- With varying levels of constraint strength, SPOT always achieve the strongest performance among extensive policy constraint methods.

Ablation Study

- Gaussian density estimation degrades the performance on datasets with complex behaviors.
- Q normalization makes an insignificant impact on total performance
- TD3 may be preferable with native designs addressing function
- approximation error



Online Fine-tuning on D4RL-AntMaze

- Strong offline2online performance
- A minimal gap between offline RL and well-established online RL methods

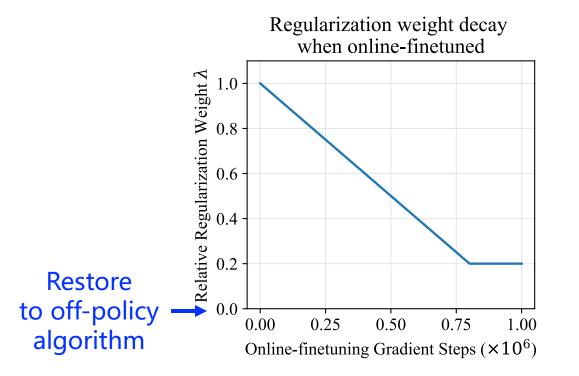


Table 4: Online fine-tuning results on AntMaze tasks, showing initial performance after offline RL and performance after 1M steps of online RL. All numbers are reported by the mean of 5 seeds.

	IQL	SPOT (Ours)
umaze-v2 umaze-diverse-v2 medium-play-v2 medium-diverse-v2 large-play-v2 large-diverse-v2	$\begin{array}{c} 85.4 \rightarrow 96.2 \\ \textbf{70.8} \rightarrow 62.2 \\ 68.6 \rightarrow 89.8 \\ \textbf{73.4} \rightarrow 90.2 \\ 40.0 \rightarrow 78.6 \\ 40.4 \rightarrow 73.4 \end{array}$	$\begin{array}{c} \textbf{93.2} \rightarrow \textbf{99.2} (+3.0) \\ 41.6 \rightarrow \textbf{96.0} (+33.8) \\ \textbf{75.2} \rightarrow \textbf{97.4} (+7.6) \\ 73.0 \rightarrow \textbf{96.2} (+6.0) \\ \textbf{40.8} \rightarrow \textbf{89.4} (+10.8) \\ \textbf{44.0} \rightarrow \textbf{90.8} (+17.4) \end{array}$
AntMaze total	$378.6 \rightarrow 490.4$	367.8 → 569.0 (+78.6)

Computational Efficiency

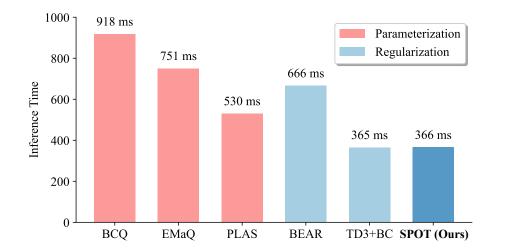


Figure 3: Runtime of various offline RL algorithms interacting with the HalfCheetah environment to produce a 1000-steps trajectory. See Appendix C.5 for the details.

Table 9: Train time of 1M steps of various offline RL algorithms.

	BCQ	BEAR	PLAS	CQL	TD3+BC	SPOT
Train time	5h 25m	12h 30m	3h 5m	14h 20m	1h 58m	3h 25m

- One forward pass of the policy network to do inference
- Indeed add training overhead due to the VAE-based density estimator

Summary

Benefits

- Excellent offline RL performance
- Strong offline2online RL performance
- Computational efficiency at inference

Limitations

- Limited by the accuracy of behavior policy estimation
 - Future work: stronger generative model
- Hyperparameter selection with online evaluation
 - Future work: offline policy evaluation, offline manual or auto-tuning

① Pluggable regularization
 ② Explicit Behavior Estimation

Thank You! wujialong0229@gmail.com