
Supported Policy Optimization for Offline
Reinforcement Learning

Jialong Wu1, Haixu Wu1, Zihan Qiu2, Jianmin Wang1, Mingsheng Long1
1School of Software, BNRist, Tsinghua University, China

2Institute for Interdisciplinary Information Sciences, Tsinghua University, China
{wujialong0229,qzh11628}@gmail.com, whx20@mails.tsinghua.edu.cn

{jimwang,mingsheng}@tsinghua.edu.cn

Abstract

Policy constraint methods to offline reinforcement learning (RL) typically utilize
parameterization or regularization that constrains the policy to perform actions
within the support set of the behavior policy. The elaborative designs of parameter-
ization methods usually intrude into the policy networks, which may bring extra
inference cost and cannot take full advantage of well-established online methods.
Regularization methods reduce the divergence between the learned policy and
the behavior policy, which may mismatch the inherent density-based definition of
support set thereby failing to avoid the out-of-distribution actions effectively. This
paper presents Supported Policy OpTimization (SPOT), which is directly derived
from the theoretical formalization of the density-based support constraint. SPOT
adopts a VAE-based density estimator to explicitly model the support set of behav-
ior policy and presents a simple but effective density-based regularization term,
which can be plugged non-intrusively into off-the-shelf off-policy RL algorithms.
SPOT achieves the state-of-the-art performance on standard benchmarks for offline
RL. Benefiting from the pluggable design, offline pretrained models from SPOT
can also be applied to perform online fine-tuning seamlessly.

1 Introduction

Offline RL [30, 31], where the agent learns from a fixed dataset, collected by arbitrary process,
not only provides a bridge between RL and the data-driven paradigm but also eliminates the need
to interact with the live environment, which is always expensive or risky in practical scenarios
[17, 33, 19]. Unfortunately, the absence of environment interaction also raises a number of challenges.
Previous work has shown that the extrapolation error of the Q-function queried by out-of-distribution
actions significantly degrades the performance of off-policy algorithms [10].

Avoiding out-of-distribution actions, namely to constrain the learned policy to perform actions within
the support set of the behavior policy, is essential to mitigate extrapolation error. To meet this support
constraint, policy constraint methods [31] to offline RL utilize either parameterization [10, 52, 12] or
regularization [16, 26, 49] techniques. However, there are still several drawbacks in previous methods
of policy constraint, limiting their performance and applications. Firstly, parameterization methods
involve elaborate designs of the policy parameterization, typically coupled to generative models of
the behavior policy, to directly constrain actions taken by the learned policy. But these designs intrude
into the architecture of policy networks, which may bring extra inference cost and supplementary
difficulties to implement and tune offline RL algorithms. Furthermore, as criticized by Fujimoto and
Gu [8], these intrusive designs complicate causal attribution of performance gains and transfer of
techniques between offline RL algorithms or from well-established online RL algorithms. In contrast,
for the second category, regularization methods are designed with a non-intrusive or pluggable

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Haixu Wu Zihan Qiu Mingsheng LongJianmin WangJialong Wu

Offline Reinforcement Learning

!!
!, #

$

Buffer
!

!!"#
Update

Experience Data {(!, #, !!, ")}

Policy)"#$

!"
Dataset
!

!
Learn

Collecting Data with)%

!

Deployment with)

!, #

$

Experience Data {(!, #, !!, ")}

!, #

$

Eliminating the need to expensive or risky interactions with

the live environment in practical scenarios

In-Distribution
Actions

OOD Actions：
Error on . Estimation

"3(%, #4(%))

Action #

True
- Function

Estimated
.'

#4(%)

Action Space

.
va
lu
e

.(
!,9
)

Extrapolation Error in Offline RL

support of the behavior policy, it heavily relies on the empirically-found approximate property of
low-sampled MMD. TD3+BC [8] simply adds a behavior cloning (BC) term to the policy update
and presents competitive performance on simple locomotion tasks. Note that recent SBAC [50]
proposes a new policy learning objective based on performance difference lemma [18], along with a
density-based regularization term similar to ours, but our work simply plugs the term into the standard
policy training objective to enjoy minimal algorithmic modifications.

Behavior policy modeling in offline RL. Most policy constraint methods need to fit an accurate
generative model of the behavior policy, to sample in-distribution actions or estimate behavior density.
Conditional variational auto-encoders (CVAE) [21, 42] are typically used by past works [10, 52] to
sample actions, while EMaQ [12] opts for using an autoregressive model [11] which enables more
accurate sampling. On the other hand, policy class of Gaussian [26, 49] or Gaussian mixture models
[24] are commonly used to fit and estimate the density of behavior policy. Instead of explicitly
fitting the behavior policy, recent approaches have utilized implicit constraint without ever querying
the values of any out-of-sample actions [51, 25]. Although MBS-QL [32] uses ELBO to estimate
marginal state distribution, to the best of our knowledge, we are unique in estimating the density of
behavior policy based on VAE, for its flexibility to capture almost arbitrary class of distributions [22].

Broader range of offline RL approaches. Besides policy constraint methods based on parameteriza-
tion or regularization, there exist more types of competitive offline RL approaches. IQL [25] designs
a multi-step dynamic programming procedure based on expectile regression, which completely avoids
any queries to values of out-of-sample actions. Pessimistic value methods, such as CQL [28], produce
a lower bound on the value of the current policy to effectively alleviate overestimation, but their
performance may suffer from excessive pessimism. Advantage-weighted regression [37, 35, 47]
improves upon behavior policy, while simultaneously enforcing an implicit KL-divergence constraint.
Recent sequence modeling methods based on Transformers [45] also show competitive performance
in both model-free [5] or model-based [15] paradigm.

3 Background

The reinforcement learning problem [43] is formulated as decision making in the environment
represented by a Markov Decision Process (MDP) M = (S,A, ⇢0, p, r, �), where S is the state space,
A is the action space, ⇢0(s0) is the initial state distribution, p(s0|s, a) is the transition distribution,
r(s, a) is the reward function, and � is the discount factor. The goal in RL is to find a policy ⇡(a|s)
maximizing the expected return: E⇡ [

P1
t=0

�tr(st, at)].

The optimal state-action value function or Q function Q⇤(s, a) measures the expected return
starting in state s taking action a and then acting optimally thereafter. A corresponding opti-
mal policy can be obtained through greedy action choices ⇡⇤(s) = argmaxa Q⇤(s, a). The Q-
learning algorithm [48] learns Q⇤ via iterating the Bellman optimality operator T , defined as:
T Q (s, a) = Es0 [r(s, a) + �maxa0 Q (s0, a0)]. For large or continuous state space, the value can be
represented by function approximators Q✓(s, a) with parameters ✓. In practice, the parameters ✓ are
updated by minimizing the mean squared Bellman error with an experience replay dataset D and a
target function Q✓̄ [34]: JQ(✓) = E(s,a,r,s0)⇠D [Q✓(s, a)� r � �maxa0 Q✓̄ (s

0, a0)]2.

In a continuous action space, the analytic maximum is intractable. Actor-Critic methods [43, 9, 13]
perform action selection with a separate policy function ⇡� maximizing the value function:

JQ(✓) = E(s,a,r,s0)⇠D [Q✓(s, a)� r � �Q✓̄ (s
0,⇡�(s

0))]
2
. (1)

The policy can be updated following the deterministic policy gradient (DPG) theorem [41]:

J⇡(�) = Es⇠D [�Q✓ (s,⇡�(s))] . (2)

3.1 Offline Reinforcement Learning

In contrast to online RL methods, which interact with environment to collect experience data, offline
RL [30, 31] methods learn from a finite and fixed dataset D = {(s, a, r, s0)} which has been collected
by some unknown behavior policy ⇡� . Direct application of off-policy methods on offline setting
suffers from extrapolation error [10, 26], which means that an out-of-distribution action a in state s
can produce erroneously overestimated values Q✓(s, a).

3

Extrapolation Error of Q Estimation

- Misleading policy gradient

- Error propagation through Bellman backups

Support Constraint in Offline RL

Support Constraint

- Tradeoff between optimality and

extrapolation error [Kumar et al. NeurIPS 19]

Action ##4(%)

"3(%, #4(%))

.
va
lu
e

.(
!,9
)

Action Space

Estimated
.' True

- Function

In-Distribution
Actions

OOD Actions：
Error on . Estimation

Parameterization vs Regularization

Support Constraint via Parameterization

• Policy coupled to generative

models

• Pros

- Direct constraint

• Cons

- Extra inference cost

- Implementation difficulty

- Complicates transfer of

design techniques BCQ
[Fujimoto et al.,

ICML 2019]

PLAS
[Zhou et al.,
CoRL 2020]

Decoder
𝑝!

𝑧!~𝒩(0, 𝐼)

Pertub
𝜉"

𝑎!

Critic
𝑄#

×𝑁

𝑎! + 𝜉!

Action
argmax

!
𝑄(𝑠, 𝑎! + 𝜉!)

Decoder
𝑝!

𝑧!~𝒩(0, 𝐼)

𝑎!

Critic
𝑄#

×𝑁

Action
argmax

!
𝑄(𝑠, 𝑎!)

𝑠

Latent
Policy
𝜋"

Decoder
𝑝$

𝑠

𝑧

Action
𝑎~𝑝$(𝑎|𝑧, 𝑠)

EMaQ
[Ghasemipour et al.,

ICML 2021]

𝑠

Parameterization vs Regularization

• Penalize divergence between 𝜋 and 𝜋!
• MMD [Kumar et al., 2019]

• Wasserstein distance [Wu et al., 2019]

• Behavior cloning term [Fujimoto & Gu, 2021]

• Pros

- Pluggable design

• Cons

- Mismatch the inherent density-based

definition of support constraint

Support Constraint via Regularization

Critic
𝑄"

Policy
𝜋#

𝑠

𝑎 = 𝜋#(𝑠)

Po
lic

y
G

ra
di

en
t

−𝑄"(𝑠, 𝜋#(𝑠))

Regulari
zation

Standard Actor-Critic

Parameterization vs Regularization

• Penalize divergence between 𝜋 and 𝜋!
• MMD [Kumar et al., 2019]

• Wasserstein distance [Wu et al., 2019]

• Behavior cloning term [Fujimoto & Gu, 2021]

• Pros

- Pluggable design

• Cons

- Mismatch the inherent density-based

definition of support constraint

Support Constraint via Regularization

Our Goal:

• A pluggable offline

RL method that also

directly meets the

support constraint

Support Constraint via Behavior Density

Policy optimization
with behavior density as constraint

Support Constraint via Behavior Density

Policy optimization
with behavior density as constraint

Heuristic approximation
widely adopted by RL literatures

Support Constraint via Behavior Density

Policy optimization
with behavior density as constraint

Heuristic approximation
widely adopted by RL literatures

Policy
learning objective

Explicit Estimation of Behavior Density

Conditional Variational Auto-Encoder (CVAE)

𝑧~𝑝 𝑧 𝑠 = 𝒩(𝟎, 𝐼)

𝑎~𝑝8(𝑎|𝑧, 𝑠)

Deep Latent
Variable Model

𝑠

C
on

di
tio

na
l

𝜓
Decoder

Explicit Estimation of Behavior Density

Conditional Variational Auto-Encoder (CVAE)

Optimization with evidence lower bound (ELBO)

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Supported Policy Optimization for Offline Reinforcement Learning

Proof. See Appendix A.1.

Note that the complete theoretical bound from Kumar et al.
(2019) also includes a term w.r.t. the bootstrapping error. We
refer readers to Kumar et al. (2019) for more details. Similar
results are also presented by Ghasemipour et al. (2021).

4. Supported Policy Optimization
As aforementioned, performing support constraint is the
typical method to mitigate extrapolation error in offline RL.
Noticing that the support constraint can be formalized based
on the density of behavior policy, we propose the Supported
Policy OpTimization (SPOT) as a regularization method
from the new perspective of explicit density estimation. Con-
cretely, SPOT involves a new regularization term, which is
directly derived from the theoretical formalization of the
support constraint. Besides, a conditional VAE is adopted to
explicitly estimate the behavior density in the regularization
term. Plugged into off-policy RL algorithms, we will finally
arrive at the practical algorithm of SPOT.

4.1. Support Constraint via Behavior Density

Similar to how the optimal policy can be extracted from
the optimal Q function, the supported optimal policy
can also be recovered via greedy selection: ⇡⇤

✏ (s) =
argmaxa:⇡�(a|s)>✏Q

⇤
✏ (s, a). For the case of function ap-

proximation, it corresponds to a constrained policy opti-
mization problem.

While prior works use specific parameterization of ⇡ (Fuji-
moto et al., 2019; Ghasemipour et al., 2021) or divergence
penalty (Kumar et al., 2019; Wu et al., 2019) to perform sup-
port constraint, we propose to directly use behavior density
⇡�(·|s) as constraint:

max
�

Es⇠D [Q✓(s,⇡�(s))]

s.t. min
s

log ⇡�(⇡�(s)|s) > ✏̂,
(7)

where ✏̂ = log ✏ for notational simplicity. Constraint via
behavior density is simple and straightforward in the context
of support constraint. We adopt log-likelihood instead of
raw likelihood because of its mathematical convenience.

This problem imposes a constraint that the density of behav-
ior policy is lower-bounded at every point in the state space,
which is impractical to solve due to the large even infinite
number of constraints. Following previous works from both
online RL (Schulman et al., 2015) and offline RL (Kumar
et al., 2019; Peng et al., 2019) w.r.t. constrained policy op-
timization, we instead use a heuristic approximation that
considers the average behavior density:

max
�

Es⇠D [Q✓(s,⇡�(s))]

s.t. Es⇠D [log ⇡�(⇡�(s)|s)] > ✏̂.
(8)

Rewriting it as a Lagrangian under the KKT conditions
(Karush, 1939; Kuhn & Tucker, 2014), we obtain1:

F(�,�) = Es [�Q✓ (s,⇡�(s))� � (log ⇡� (⇡�(s)|s)� ✏̂)] ,
(9)

where � is a Lagrangian multiplier. For a fixed �, it can be
rewritten into an optimizable loss function

J⇡(�) = Es [�Q✓ (s,⇡�(s))� � log ⇡� (⇡�(s)|s)] .
(10)

4.2. Explicit Estimation of Behavior Density

The straightforward regularization term in Eq. (10) requires
access to ⇡� . While we only have offline data generated by
⇡� , we can explicitly estimate the probability density at an
arbitrary point with the density estimation methods (Bishop,
2006).

The variational autoencoder (VAE) (Kingma & Welling,
2014) is among the best performing neural density-
estimation models and we opt to use a conditional vari-
antional autoencoder (Sohn et al., 2015) as our density esti-
mator. Typically, ⇡�(a|s) can be approximated by a Deep
Latent Variable Model p (a|s) =

R
p (a|z, s)p(z|s)dz

with a fixed prior p(z|s) = N (0, I). While the marginal
likelihood p (a|s) is intractable, VAE additionally uses an
approximate posterior q'(z|a, s) ⇡ p (z|a, s) and parame-
ters and ' can be optimized jointly with evidence lower
bound (ELBO):

log p (a|s) � Eq'(z|a,s)


log

p (a, z|s)
q'(z|a, s)

�

= Eq'(z|a,s) [log p (a|z, s)]
�KL [q'(z|a, s)kp(z|s)]

def
= �LELBO(s, a;',).

(11)

After training a VAE, we can simply use �LELBO to
lower-bound log p (a|s) and thus approximately lower-
bound log ⇡� in Eq. (10). However, there theoretically
exists a bias between them, as we know log p (a|s) =
�LELBO + KL(q'(z|a, s)||p (z|a, s)). To obtain an esti-
mation with lower bias, we can use the importance sampling
technique (Rezende et al., 2014):

log p (a|s) = logEq'(z|a,s)


p (a, z|s)
q'(z|a, s)

�

⇡ Ez(l)⇠q'(z|a,s)

"
log

1

L

LX

l=1

p (a, z(l)|s)
q'(z(l)|a, s)

#

def
= \log ⇡�(a|s;', , L).

(12)
1Unless otherwise specified, we use Es to stand for Es⇠D for

notational simplicity.

𝑎

𝑧~𝑞9(𝑧|𝑎, 𝑠)

𝑎~𝑝8(𝑎|𝑧, 𝑠)

Variational
Auto-Encoder

𝜑
Encoder

𝜓
Decoder

𝑠

C
on

di
tio

na
l

Explicit Estimation of Behavior Density

Density estimation with importance sampling
[Rezende et al., ICML 2014]

Converting the constrained optimization problem into an unconstrained one by treating the constraint
term as a penalty, we finally get the policy learning objective as

J⇡(�) = Es⇠D [�Q✓ (s,⇡�(s))� � log ⇡� (⇡�(s)|s)] , (6)

where � is a Lagrangian multiplier.

4.2 Explicit Estimation of Behavior Density

The straightforward regularization term in Eq. (6) requires access to ⇡� . While we only have offline
data generated by ⇡� , we can explicitly estimate the probability density at an arbitrary point with the
density estimation methods [1].

The variational autoencoder (VAE) [21] is among the best performing neural density-estimation
models and we opt to use a conditional variational autoencoder [42] as our density estimator. Typically,
⇡�(a|s) can be approximated by a Deep Latent Variable Model p (a|s) =

R
p (a|z, s)p(z|s)dz

with a fixed prior p(z|s) = N (0, I). While the marginal likelihood p (a|s) is intractable, VAE
additionally uses an approximate posterior q'(z|a, s) ⇡ p (z|a, s) and parameters and ' can be
optimized jointly with evidence lower bound (ELBO):

log p (a|s) � Eq'(z|a,s)


log

p (a, z|s)
q'(z|a, s)

�

= Eq'(z|a,s) [log p (a|z, s)]�KL [q'(z|a, s)kp(z|s)]
def
= �LELBO(s, a;',).

(7)

After training a VAE, we can simply use �LELBO to lower-bound log p (a|s) and thus approximately
lower-bound log ⇡� in Eq. (6). However, there theoretically exists a bias between them, as we know
log p (a|s) = �LELBO +KL(q'(z|a, s)||p (z|a, s)). To obtain an estimation with lower bias, we
can use the importance sampling technique [39, 22]:

log p (a|s) = logEq'(z|a,s)


p (a, z|s)
q'(z|a, s)

�

⇡ Ez(l)⇠q'(z|a,s)

"
log

1

L

LX

l=1

p (a, z(l)|s)
q'(z(l)|a, s)

#

def
= \log ⇡�(a|s;', , L).

(8)

Burda et al. [3] show that \log ⇡�(a|s;', , L) gives a lower bound of log p (a|s) and the bound
becomes tighter as L increases. Note that here we adopt sampling of VAE to directly estimate the
density of the behavior policy instead of to estimate the divergence [26].

In summary, the loss function in Eq. (6) can be implemented with the explicit density estimator as
follows:

J⇡(�) = Es⇠D

h
�Q✓ (s,⇡�(s))� �\log ⇡�(⇡�(s)|s;', , L)

i
. (9)

4.3 Practical Algorithm

The general framework derived above can be built on top of off-policy algorithms with minimal
modifications. We choose TD3 [9] as our base algorithm, which recently shows strong resistance to
overestimation in offline RL [8] (see Section 5.2 for a detailed discussion).

Q normalization. Following TD3+BC [8], we add a normalization term to policy loss as
a default option for better balance between Q value objective and regularization: J⇡(�) =

Es⇠D

h
�Q✓(s,⇡�(s))

↵ � �\log ⇡�(⇡�(s)|s;', , L)
i
, where ↵ = 1

N

P
si
|Q (si,⇡�(si))| is the nor-

malization term based on the minibatch {si}Ni=1
with size N .

Simpler density estimator. While \log ⇡�(a|s;', , L) with large L is much tighter, we empirically
find there is no further improvement with larger L compared to L = 1 (see Figure 7 in Appendix
for results of ablation study). To make our algorithm simpler, we choose to only use L = 1 for

5

𝑎

𝑧~𝑞9(𝑧|𝑎, 𝑠)

𝑎~𝑝8(𝑎|𝑧, 𝑠)

Variational
Auto-Encoder

𝜑
Encoder

𝜓
Decoder

𝑠

C
on

di
tio

na
l

Explicit Estimation of Behavior Density

Density estimation with importance sampling
[Rezende et al., ICML 2014]

Policy learning objective with density estimator

Converting the constrained optimization problem into an unconstrained one by treating the constraint
term as a penalty, we finally get the policy learning objective as

J⇡(�) = Es⇠D [�Q✓ (s,⇡�(s))� � log ⇡� (⇡�(s)|s)] , (6)

where � is a Lagrangian multiplier.

4.2 Explicit Estimation of Behavior Density

The straightforward regularization term in Eq. (6) requires access to ⇡� . While we only have offline
data generated by ⇡� , we can explicitly estimate the probability density at an arbitrary point with the
density estimation methods [1].

The variational autoencoder (VAE) [21] is among the best performing neural density-estimation
models and we opt to use a conditional variational autoencoder [42] as our density estimator. Typically,
⇡�(a|s) can be approximated by a Deep Latent Variable Model p (a|s) =

R
p (a|z, s)p(z|s)dz

with a fixed prior p(z|s) = N (0, I). While the marginal likelihood p (a|s) is intractable, VAE
additionally uses an approximate posterior q'(z|a, s) ⇡ p (z|a, s) and parameters and ' can be
optimized jointly with evidence lower bound (ELBO):

log p (a|s) � Eq'(z|a,s)


log

p (a, z|s)
q'(z|a, s)

�

= Eq'(z|a,s) [log p (a|z, s)]�KL [q'(z|a, s)kp(z|s)]
def
= �LELBO(s, a;',).

(7)

After training a VAE, we can simply use �LELBO to lower-bound log p (a|s) and thus approximately
lower-bound log ⇡� in Eq. (6). However, there theoretically exists a bias between them, as we know
log p (a|s) = �LELBO +KL(q'(z|a, s)||p (z|a, s)). To obtain an estimation with lower bias, we
can use the importance sampling technique [39, 22]:

log p (a|s) = logEq'(z|a,s)


p (a, z|s)
q'(z|a, s)

�

⇡ Ez(l)⇠q'(z|a,s)

"
log

1

L

LX

l=1

p (a, z(l)|s)
q'(z(l)|a, s)

#

def
= \log ⇡�(a|s;', , L).

(8)

Burda et al. [3] show that \log ⇡�(a|s;', , L) gives a lower bound of log p (a|s) and the bound
becomes tighter as L increases. Note that here we adopt sampling of VAE to directly estimate the
density of the behavior policy instead of to estimate the divergence [26].

In summary, the loss function in Eq. (6) can be implemented with the explicit density estimator as
follows:

J⇡(�) = Es⇠D

h
�Q✓ (s,⇡�(s))� �\log ⇡�(⇡�(s)|s;', , L)

i
. (9)

4.3 Practical Algorithm

The general framework derived above can be built on top of off-policy algorithms with minimal
modifications. We choose TD3 [9] as our base algorithm, which recently shows strong resistance to
overestimation in offline RL [8] (see Section 5.2 for a detailed discussion).

Q normalization. Following TD3+BC [8], we add a normalization term to policy loss as
a default option for better balance between Q value objective and regularization: J⇡(�) =

Es⇠D

h
�Q✓(s,⇡�(s))

↵ � �\log ⇡�(⇡�(s)|s;', , L)
i
, where ↵ = 1

N

P
si
|Q (si,⇡�(si))| is the nor-

malization term based on the minibatch {si}Ni=1
with size N .

Simpler density estimator. While \log ⇡�(a|s;', , L) with large L is much tighter, we empirically
find there is no further improvement with larger L compared to L = 1 (see Figure 7 in Appendix
for results of ablation study). To make our algorithm simpler, we choose to only use L = 1 for

5

𝑎

𝑧~𝑞9(𝑧|𝑎, 𝑠)

𝑎~𝑝8(𝑎|𝑧, 𝑠)

Variational
Auto-Encoder

𝜑
Encoder

𝜓
Decoder

𝑠

C
on

di
tio

na
l

Supported Policy Optimization

Algorithm 1 Supported Policy Optimization (SPOT)

Input: Dataset D = {(s, a, r, s0)}
// VAE Training
Initialize VAE with parameters and '
for t = 1 to T1 do

Sample minibatch of transitions (s, a) ⇠ D
Update ,' minimizing LELBO(s, a;',) in Eq. (7)

end for
// Policy Training
Initialize the policy network ⇡�, critic network Q✓ and target network Q✓̄ with ✓̄ ✓
for t = 1 to T2 do

Sample minibatch of transitions (s, a, r, s0) ⇠ D
Update ✓ minimizing JQ(✓) in Eq. (1)
Update � minimizing J⇡(�) in Eq. (9)
Update target network: ✓̄ ⌧✓ + (1� ⌧)✓̄

end for

a practical estimator, which is just the ELBO estimator of the VAE: \log ⇡�(a|s;', , L = 1) =
�LELBO(s, a;',). Note that with L = 1, we can analytically separate out the KL divergence as
Eq. (7) to enjoy a simpler and lower-variance update.

Overall algorithm. Putting everything together, the full algorithm is summarized in Algorithm 1.
Our algorithm first trains VAE using LELBO(s, a;',) to obtain a density estimator with sufficient
accuracy. Then it turns to policy training analogous to common Actor-Critic methods except that we
plug the regularization term computed by the density estimator into the policy loss J⇡(�).

5 Experimental Evaluation

Our experiments aim to evaluate our method comparatively, in contrast to prior offline RL methods,
focusing on both offline training and online fine-tuning. We first demonstrate the effect of � on
applying support constraint and show that our method is able to learn a policy with the strongest
performance at the same level of constraint strength, compared to previous policy constraint methods.
We then evaluate SPOT on D4RL benchmark [6], studying how effective our method is in contrast
to a broader range of state-of-the-art offline RL methods. Finally, we study how SPOT compares to
prior methods when fine-tuning with online RL from an offline RL initialization, and investigate the
computational efficiency of different methods. Code is available at https://github.com/thuml/
SPOT.

5.1 Analysis of Support Constraint in SPOT

Effect of � on constraint strength. The coefficient � in SPOT is essential and corresponds to a
specific constraint strength in the constrained policy optimization problem formalized in Eq. (4). To
illustrate how � effects the learned policy, we evaluate behavior density of actions taken by the policy
learned with varying values of � 2 [0.05, 0.1, 0.2, 0.5] on standard D4RL [6] Gym-MuJoCo domains.
Concretely, we plot the distribution of behavior density log ⇡�(⇡�(s)|s), s ⇠ D in Figure 1a, where
log ⇡� is estimated by our learned density estimator (Eq. (8)) with L set to a sufficient large number
500 for more accurate estimation. As we show, with smaller �, the learned policy is much more
possible to perform actions with low behavior density log ⇡�(⇡�(s)|s). On the other hand, policies
learned by higher � are restricted to take only high-density actions.

Tradeoff between constraint strength and optimality. It has been shown by Kumar et al. [26]
that the optimality of approximate supported optimal policy is lower-bounded by a tradeoff between
keeping the learned policy supported by the behavior policy (controlling extrapolation error) and
keeping the supported policy set large enough to capture well-performing policies. If the constraint
in Eq. (4) is strong (by a large log ✏), the extrapolation error is restrained to be small but the optimal

6

(1). Density Estimation
with VAE

(2). Actor-Critic
with Plugged Regularization

Supported Policy Optimization

Algorithm 1 Supported Policy Optimization (SPOT)

Input: Dataset D = {(s, a, r, s0)}
// VAE Training
Initialize VAE with parameters and '
for t = 1 to T1 do

Sample minibatch of transitions (s, a) ⇠ D
Update ,' minimizing LELBO(s, a;',) in Eq. (7)

end for
// Policy Training
Initialize the policy network ⇡�, critic network Q✓ and target network Q✓̄ with ✓̄ ✓
for t = 1 to T2 do

Sample minibatch of transitions (s, a, r, s0) ⇠ D
Update ✓ minimizing JQ(✓) in Eq. (1)
Update � minimizing J⇡(�) in Eq. (9)
Update target network: ✓̄ ⌧✓ + (1� ⌧)✓̄

end for

a practical estimator, which is just the ELBO estimator of the VAE: \log ⇡�(a|s;', , L = 1) =
�LELBO(s, a;',). Note that with L = 1, we can analytically separate out the KL divergence as
Eq. (7) to enjoy a simpler and lower-variance update.

Overall algorithm. Putting everything together, the full algorithm is summarized in Algorithm 1.
Our algorithm first trains VAE using LELBO(s, a;',) to obtain a density estimator with sufficient
accuracy. Then it turns to policy training analogous to common Actor-Critic methods except that we
plug the regularization term computed by the density estimator into the policy loss J⇡(�).

5 Experimental Evaluation

Our experiments aim to evaluate our method comparatively, in contrast to prior offline RL methods,
focusing on both offline training and online fine-tuning. We first demonstrate the effect of � on
applying support constraint and show that our method is able to learn a policy with the strongest
performance at the same level of constraint strength, compared to previous policy constraint methods.
We then evaluate SPOT on D4RL benchmark [6], studying how effective our method is in contrast
to a broader range of state-of-the-art offline RL methods. Finally, we study how SPOT compares to
prior methods when fine-tuning with online RL from an offline RL initialization, and investigate the
computational efficiency of different methods. Code is available at https://github.com/thuml/
SPOT.

5.1 Analysis of Support Constraint in SPOT

Effect of � on constraint strength. The coefficient � in SPOT is essential and corresponds to a
specific constraint strength in the constrained policy optimization problem formalized in Eq. (4). To
illustrate how � effects the learned policy, we evaluate behavior density of actions taken by the policy
learned with varying values of � 2 [0.05, 0.1, 0.2, 0.5] on standard D4RL [6] Gym-MuJoCo domains.
Concretely, we plot the distribution of behavior density log ⇡�(⇡�(s)|s), s ⇠ D in Figure 1a, where
log ⇡� is estimated by our learned density estimator (Eq. (8)) with L set to a sufficient large number
500 for more accurate estimation. As we show, with smaller �, the learned policy is much more
possible to perform actions with low behavior density log ⇡�(⇡�(s)|s). On the other hand, policies
learned by higher � are restricted to take only high-density actions.

Tradeoff between constraint strength and optimality. It has been shown by Kumar et al. [26]
that the optimality of approximate supported optimal policy is lower-bounded by a tradeoff between
keeping the learned policy supported by the behavior policy (controlling extrapolation error) and
keeping the supported policy set large enough to capture well-performing policies. If the constraint
in Eq. (4) is strong (by a large log ✏), the extrapolation error is restrained to be small but the optimal

6

Practical Implementation

- Base algorithm: TD3

- Q normalization following

TD3+BC [Fujimoto & Gu,

NeurIPS 2021]

- Simpler density estimator

with 𝐿 = 1 (ELBO estimator)

Experimental Evaluation on D4RL-Gym-MuJoCo

Table 2: Performance of SPOT and prior methods on Gym-MuJoCo tasks. m = medium, m-r =
medium-replay, m-e = medium-expert. For baselines, we report numbers directly from the IQL paper
[25], which provides a unified comparison for “-v2” datasets. For SPOT, we report the mean and
standard deviation for 10 seeds.

BC AWAC DT Onestep TD3+BC CQL IQL SPOT (Ours)

HalfCheetah-m-e-v2 55.2 42.8 86.8 93.4 90.7 91.6 86.7 86.9±4.3
Hopper-m-e-v2 52.5 55.8 107.6 103.3 98.0 105.4 91.5 99.3±7.1
Walker-m-e-v2 107.5 74.5 108.1 113.0 110.1 108.8 109.6 112.0±0.5

HalfCheetah-m-v2 42.6 43.5 42.6 48.4 48.3 44.0 47.4 58.4±1.0
Hopper-m-v2 52.9 57.0 67.6 59.6 59.3 58.5 66.2 86.0±8.7
Walker-m-v2 75.3 72.4 74.0 81.8 83.7 72.5 78.3 86.4±2.7

HalfCheetah-m-r-v2 36.6 40.5 36.6 38.1 44.6 45.5 44.2 52.2±1.2
Hopper-m-r-v2 18.1 37.2 82.7 97.5 60.9 95.0 94.7 100.2±1.9
Walker-m-r-v2 26.0 27.0 66.6 49.5 81.8 77.2 73.8 91.6±2.8

Gym-MuJoCo total 466.7 450.7 672.6 684.6 677.4 698.5 692.4 773.0±30.2

Table 3: Performance of SPOT and prior methods on AntMaze tasks. For baselines, we obtain the
results using author-provided implementations on “-v2” datasets. For BCQ and BEAR, we report
numbers from D4RL paper [6]. For SPOT, we report the mean and standard deviation for 10 seeds.

BCQ BEAR BC DT TD3+BC PLAS CQL IQL SPOT (Ours)

umaze-v2 78.9 73.0 49.2 54.2±4.1 73.0±34.0 62.0±16.7 82.6±5.7 89.6±4.2 93.5±2.4

umaze-diverse-v2 55.0 61.0 41.8 41.2±11.4 47.0±7.3 45.4±7.9 10.2±6.7 65.6±8.3 40.7±5.1

medium-play-v2 0.0 0.0 0.4 0.0±0.0 0.0±0.0 31.4±21.5 59.0±1.6 76.4±2.7 74.7±4.6

medium-diverse-v2 0.0 8.0 0.2 0.0±0.0 0.2±0.4 20.6±27.7 46.6±24.0 72.8±7.0 79.1±5.6

large-play-v2 6.7 0.0 0.0 0.0±0.0 0.0±0.0 2.2±3.8 16.4±17.1 42.0±3.8 35.3±8.3

large-diverse-v2 2.2 0.0 0.0 0.0±0.0 0.0±0.0 3.0±6.7 3.2±4.1 46.0±4.5 36.3±13.7

AntMaze total 142.8 142.0 91.6 95.4±15.5 120.2±41.7 164.6±84.3 218.0±59.2 392.4±30.5 359.6±39.7

BEAR trained on “-v0” datasets, directly from [6]. It is not suitable to compare them with reproduced
baselines but we include them in order to highlight that previous policy constraint methods struggle
to succeed in training on challenging AntMaze domains.

As shown in Table 3, SPOT performs slightly worse than IQL but outperforms remaining modern
offline RL baselines, including the pessimistic value method CQL and the sequence modeling method
Decision Transformer. Note that IQL ingeniously designs multi-step dynamic programming and
policy extraction steps to apply an implicit constraint for offline RL, but when online fine-tuned after
offline RL initialization, IQL is inferior to SPOT. SPOT’s pluggable design can take full advantage
of existing online RL algorithms (see Section 5.3 and Table 4). To the best of our knowledge,
our algorithm is the first to train successfully in challenging AntMaze domains with pluggable
modification on top of off-policy RL methods for offline RL.

Ablation. In Figure 2, we perform an ablation study over the components in our method. First, we
replace the VAE-based density estimator with a behavioral-cloned Gaussian policy model [26, 49].
As expected, it degrades the performance due to the lack of flexibility to model complex distribution,
especially on Gym-MuJoCo medium-expert datasets and AntMaze datasets. Then, we evaluate SPOT
without Q normalization and find that the removal provides some benefits as well as damages on
different datasets, with only an insignificant impact on total performance. Nevertheless, we include it
as a default option following TD3+BC [8].

Lastly, we investigate how the base off-policy algorithm matters. Since SAC [13] has similar off-
policy performance with TD3, we attempt to adopt SAC as our base method. As Xu et al. [50]
argue that the entropy term will do harm to the offline setting, we also implement a variant of SAC
without maximum entropy regularization. Surprisingly, both variants are vulnerable to pathological
extrapolation error on AntMaze domains and provide poor performance (see Figure 2). We argue that

8

State-of-the-art performance on locomotion tasks

Experimental Evaluation on D4RL-AntMaze

Table 2: Performance of SPOT and prior methods on Gym-MuJoCo tasks. m = medium, m-r =
medium-replay, m-e = medium-expert. For baselines, we report numbers directly from the IQL paper
[25], which provides a unified comparison for “-v2” datasets. For SPOT, we report the mean and
standard deviation for 10 seeds.

BC AWAC DT Onestep TD3+BC CQL IQL SPOT (Ours)

HalfCheetah-m-e-v2 55.2 42.8 86.8 93.4 90.7 91.6 86.7 86.9±4.3
Hopper-m-e-v2 52.5 55.8 107.6 103.3 98.0 105.4 91.5 99.3±7.1
Walker-m-e-v2 107.5 74.5 108.1 113.0 110.1 108.8 109.6 112.0±0.5

HalfCheetah-m-v2 42.6 43.5 42.6 48.4 48.3 44.0 47.4 58.4±1.0
Hopper-m-v2 52.9 57.0 67.6 59.6 59.3 58.5 66.2 86.0±8.7
Walker-m-v2 75.3 72.4 74.0 81.8 83.7 72.5 78.3 86.4±2.7

HalfCheetah-m-r-v2 36.6 40.5 36.6 38.1 44.6 45.5 44.2 52.2±1.2
Hopper-m-r-v2 18.1 37.2 82.7 97.5 60.9 95.0 94.7 100.2±1.9
Walker-m-r-v2 26.0 27.0 66.6 49.5 81.8 77.2 73.8 91.6±2.8

Gym-MuJoCo total 466.7 450.7 672.6 684.6 677.4 698.5 692.4 773.0±30.2

Table 3: Performance of SPOT and prior methods on AntMaze tasks. For baselines, we obtain the
results using author-provided implementations on “-v2” datasets. For BCQ and BEAR, we report
numbers from D4RL paper [6]. For SPOT, we report the mean and standard deviation for 10 seeds.

BCQ BEAR BC DT TD3+BC PLAS CQL IQL SPOT (Ours)

umaze-v2 78.9 73.0 49.2 54.2±4.1 73.0±34.0 62.0±16.7 82.6±5.7 89.6±4.2 93.5±2.4

umaze-diverse-v2 55.0 61.0 41.8 41.2±11.4 47.0±7.3 45.4±7.9 10.2±6.7 65.6±8.3 40.7±5.1

medium-play-v2 0.0 0.0 0.4 0.0±0.0 0.0±0.0 31.4±21.5 59.0±1.6 76.4±2.7 74.7±4.6

medium-diverse-v2 0.0 8.0 0.2 0.0±0.0 0.2±0.4 20.6±27.7 46.6±24.0 72.8±7.0 79.1±5.6

large-play-v2 6.7 0.0 0.0 0.0±0.0 0.0±0.0 2.2±3.8 16.4±17.1 42.0±3.8 35.3±8.3

large-diverse-v2 2.2 0.0 0.0 0.0±0.0 0.0±0.0 3.0±6.7 3.2±4.1 46.0±4.5 36.3±13.7

AntMaze total 142.8 142.0 91.6 95.4±15.5 120.2±41.7 164.6±84.3 218.0±59.2 392.4±30.5 359.6±39.7

BEAR trained on “-v0” datasets, directly from [6]. It is not suitable to compare them with reproduced
baselines but we include them in order to highlight that previous policy constraint methods struggle
to succeed in training on challenging AntMaze domains.

As shown in Table 3, SPOT performs slightly worse than IQL but outperforms remaining modern
offline RL baselines, including the pessimistic value method CQL and the sequence modeling method
Decision Transformer. Note that IQL ingeniously designs multi-step dynamic programming and
policy extraction steps to apply an implicit constraint for offline RL, but when online fine-tuned after
offline RL initialization, IQL is inferior to SPOT. SPOT’s pluggable design can take full advantage
of existing online RL algorithms (see Section 5.3 and Table 4). To the best of our knowledge,
our algorithm is the first to train successfully in challenging AntMaze domains with pluggable
modification on top of off-policy RL methods for offline RL.

Ablation. In Figure 2, we perform an ablation study over the components in our method. First, we
replace the VAE-based density estimator with a behavioral-cloned Gaussian policy model [26, 49].
As expected, it degrades the performance due to the lack of flexibility to model complex distribution,
especially on Gym-MuJoCo medium-expert datasets and AntMaze datasets. Then, we evaluate SPOT
without Q normalization and find that the removal provides some benefits as well as damages on
different datasets, with only an insignificant impact on total performance. Nevertheless, we include it
as a default option following TD3+BC [8].

Lastly, we investigate how the base off-policy algorithm matters. Since SAC [13] has similar off-
policy performance with TD3, we attempt to adopt SAC as our base method. As Xu et al. [50]
argue that the entropy term will do harm to the offline setting, we also implement a variant of SAC
without maximum entropy regularization. Surprisingly, both variants are vulnerable to pathological
extrapolation error on AntMaze domains and provide poor performance (see Figure 2). We argue that

8

State-of-the-art method

Strong performance with a simple pluggable design

(a) Effect of �. (b) Tradeoff between constraint strength and optimality.

Figure 1: Analysis on constraint strength: (a) With varying values of the coefficient �, SPOT applies
support constraint with different strength, which is demonstrated by the behavior density of actions
taken by the learned policy: log ⇡�(⇡�(s)|s), s ⇠ D. (b) When evaluating the performance at
varying levels of constraint strength, SPOT takes shape of the “upper envelope” of all methods,
showing that SPOT can always achieve the strongest performance among extensive policy constraint
methods. Constraint strength is captured approximately by the 5th-percentile of the distribution
log ⇡�(⇡�(s)|s), s ⇠ D. Extended results can be found in Appendix C.4.

policy under constraint may have poor performance. Otherwise, if the constraint is weak, well-
performing policies can be learned though at the risk of the extrapolation error.

We aim to answer the question that at the same level of constraint being satisfied, is SPOT able to

learn a policy with the strongest performance compared to previous policy constraint methods? We
compare SPOT with BC [38], BCQ [10], BEAR [26], PLAS [52] and TD3+BC [8]. Hyperparameters
to control constraint strength of various methods are adjusted to several values to form a spectrum of
constraint strength (see Appendix C.4 for details). We approximate the satisfied constraint strength
log ✏ by the 5th-percentile of the distribution log ⇡�(⇡�(s)|s), s ⇠ D. As shown in Figure 1b, our
method SPOT takes shape of the “upper envelope” of all methods, demonstrating that taking advantage
of exact standard formulation of support constraint, SPOT is flexible to learn the supported optimal
policy and resist extrapolation error at the same time. Note that the divergence-based regularization
method BEAR [26] yields a poor performance in our experiments and only satisfies a loose constraint
in contrast to other baselines, showing that it cannot prevent out-of-distribution actions effectively
and suffers from extrapolation error with indirect divergence regularization.

5.2 Comparisons on Offline RL Benchmarks

Next, we evaluate our approach on the D4RL benchmark [6] in comparison to state-of-the-art methods.
We focus on Gym-MuJoCo locomotion domains and much more challenging AntMaze domains,
which consists of sparse-reward tasks and requires “stitching” fragments of suboptimal trajectories
traveling undirectedly in order to find a path from the start to the goal of the maze.

Baselines. We select the classic BC [38] and state-of-the-art offline RL methods as baselines. For
methods based on dynamic programming, we compare to AWAC [35], Onestep RL [2], TD3+BC [8],
CQL [28], and IQL [25]. We also include the sequence-modeling method Decision Transformer [5].

Hyperparameter tuning. The weight � in Eq. (9) is essential for policy constraint. Following prior
works [2, 26, 49], we allow access to the online environment to tune a small set of the hyperparameter
� (< 10 choices) , which is a reasonable setup for practical applications. See Appendix C.1 for
additional discussion and details.

Gym-MuJoCo domains. Results for the Gym-MuJoCo domains are shown in Table 2. As we show,
SPOT substantially outperforms state-of-the-art methods, especially in suboptimal “medium” and
“medium-replay” datasets with a large margin, which further demonstrates the advantages of direct
constraint on behavior density proposed by SPOT.

AntMaze domains. Results for the AntMaze domains are shown in Table 3. Note that D4RL recently
releases a bug-fixed “-v2” version of AntMaze datasets, and thus we select competitive baselines and
rerun their author-provided implementations for comparison. We also include results for BCQ and

7

Analysis on Support Constraint

• Regularization weight 𝜆 effectively applies support constraint with different strength.

• With varying levels of constraint strength, SPOT always achieve the strongest

performance among extensive policy constraint methods.

Ablation Study

Figure 2: Percent difference of the performance of an ablation of SPOT, compared with the original
algorithm. Hc = HalfCheetah, H = Hopper, W = Walker, me = medium-expert, m = medium, mr
= medium-replay. Am = AntMaze, u = umaze, m = medium, l = large, d = diverse, p = play.
Implementation details and quantitative results can be found in Appendix C.2.

several key native designs of TD3 are beneficial to offline RL. (1). For the case of learning a stochastic
policy without entropy regularization, we find that the learned policy quickly degenerates into a
deterministic one (with near-zero standard deviation). A concern with deterministic policies is that
they are prone to overfit overestimated actions and propagate the estimation error through Bellman
backups, which is even serious in offline RL. Hopefully, TD3 introduces Target Policy Smoothing
[9, 44] into Eq. (1), which adds random noise to target actions and can alleviate the effect of error
propagation. (2). For the case with entropy regularization, Bellman backup of a stochastic policy
resembles Target Policy Smoothing, then the primary distinction may come from the actor learning
objective. While TD3 produces a deterministic action minimizing Eq. (9), stochastic policies are more
likely to produce out-of-distribution actions with erroneous estimated values, so the policy gradient
may become biased as well as with high variance. On much easier Gym-MuJoCo domains, SAC-style
SPOT variants are comparable to the TD3 variant on most of the datasets, but we remark that TD3
indeed extends the limit of policy constraint methods on some tasks, such as hopper-medium. Our
analysis suggests that TD3 may be preferable for offline RL as the base off-policy method with native
designs (such as “stochastic” critic training and deterministic actor training) addressing function
approximation error not only in the online setting but also in the offline setting [8].

5.3 Online Fine-tuning after Offline RL

Pluggable SPOT can be online fine-tuned seamlessly, which means that we only need to gradually
decay the constraint strength � in the online phase in order to avoid excessive conservatism. As
AWAC [35] shows that behavior models are hard to update online, we fix the VAE during online
fine-tuning. Note that when � is zero, our algorithm is exactly the standard off-policy RL algorithm
that SPOT builds upon. It is beneficial since we enjoy a minimal gap between offline RL and
well-established online RL methods and can take full advantage of them for online fine-tuning.

Table 4: Online fine-tuning results on AntMaze tasks, show-
ing initial performance after offline RL and performance after
1M steps of online RL. All numbers are reported by the mean
of 5 seeds.

IQL SPOT (Ours)

umaze-v2 85.4 ! 96.2 93.2 ! 99.2 (+3.0)
umaze-diverse-v2 70.8 ! 62.2 41.6 ! 96.0 (+33.8)
medium-play-v2 68.6 ! 89.8 75.2 ! 97.4 (+7.6)
medium-diverse-v2 73.4 ! 90.2 73.0 ! 96.2 (+6.0)
large-play-v2 40.0 ! 78.6 40.8 ! 89.4 (+10.8)
large-diverse-v2 40.4 ! 73.4 44.0 ! 90.8 (+17.4)

AntMaze total 378.6 ! 490.4 367.8 ! 569.0 (+78.6)

Since IQL [25] is the strongest base-
line in our offline experiments, which
also has shown superior online per-
formance than prior methods [35, 28]
in its paper, and most of the other
baselines fail to learn meaningful re-
sults, we follow the experiments of
IQL and compare to IQL in online
fine-tuning. We also compare to our
base RL method TD3 [9] trained on-
line from scratch. We use the chal-
lenging AntMaze domains [6]. Dur-
ing online fine-tuning of SPOT, the
regularization weight � is linearly de-
cayed to one-fifth of its initial value.
See Appendix C.3 for details.

Results are shown in Table 4. While online training from scratch fails in the challenging sparse
reward tasks on AntMaze domains, SPOT initialized with offline RL succeeds to learn nearly optimal

9

Figure 2: Percent difference of the performance of an ablation of SPOT, compared with the original
algorithm. Hc = HalfCheetah, H = Hopper, W = Walker, me = medium-expert, m = medium, mr
= medium-replay. Am = AntMaze, u = umaze, m = medium, l = large, d = diverse, p = play.
Implementation details and quantitative results can be found in Appendix C.2.

several key native designs of TD3 are beneficial to offline RL. (1). For the case of learning a stochastic
policy without entropy regularization, we find that the learned policy quickly degenerates into a
deterministic one (with near-zero standard deviation). A concern with deterministic policies is that
they are prone to overfit overestimated actions and propagate the estimation error through Bellman
backups, which is even serious in offline RL. Hopefully, TD3 introduces Target Policy Smoothing
[9, 44] into Eq. (1), which adds random noise to target actions and can alleviate the effect of error
propagation. (2). For the case with entropy regularization, Bellman backup of a stochastic policy
resembles Target Policy Smoothing, then the primary distinction may come from the actor learning
objective. While TD3 produces a deterministic action minimizing Eq. (9), stochastic policies are more
likely to produce out-of-distribution actions with erroneous estimated values, so the policy gradient
may become biased as well as with high variance. On much easier Gym-MuJoCo domains, SAC-style
SPOT variants are comparable to the TD3 variant on most of the datasets, but we remark that TD3
indeed extends the limit of policy constraint methods on some tasks, such as hopper-medium. Our
analysis suggests that TD3 may be preferable for offline RL as the base off-policy method with native
designs (such as “stochastic” critic training and deterministic actor training) addressing function
approximation error not only in the online setting but also in the offline setting [8].

5.3 Online Fine-tuning after Offline RL

Pluggable SPOT can be online fine-tuned seamlessly, which means that we only need to gradually
decay the constraint strength � in the online phase in order to avoid excessive conservatism. As
AWAC [35] shows that behavior models are hard to update online, we fix the VAE during online
fine-tuning. Note that when � is zero, our algorithm is exactly the standard off-policy RL algorithm
that SPOT builds upon. It is beneficial since we enjoy a minimal gap between offline RL and
well-established online RL methods and can take full advantage of them for online fine-tuning.

Table 4: Online fine-tuning results on AntMaze tasks, show-
ing initial performance after offline RL and performance after
1M steps of online RL. All numbers are reported by the mean
of 5 seeds.

IQL SPOT (Ours)

umaze-v2 85.4 ! 96.2 93.2 ! 99.2 (+3.0)
umaze-diverse-v2 70.8 ! 62.2 41.6 ! 96.0 (+33.8)
medium-play-v2 68.6 ! 89.8 75.2 ! 97.4 (+7.6)
medium-diverse-v2 73.4 ! 90.2 73.0 ! 96.2 (+6.0)
large-play-v2 40.0 ! 78.6 40.8 ! 89.4 (+10.8)
large-diverse-v2 40.4 ! 73.4 44.0 ! 90.8 (+17.4)

AntMaze total 378.6 ! 490.4 367.8 ! 569.0 (+78.6)

Since IQL [25] is the strongest base-
line in our offline experiments, which
also has shown superior online per-
formance than prior methods [35, 28]
in its paper, and most of the other
baselines fail to learn meaningful re-
sults, we follow the experiments of
IQL and compare to IQL in online
fine-tuning. We also compare to our
base RL method TD3 [9] trained on-
line from scratch. We use the chal-
lenging AntMaze domains [6]. Dur-
ing online fine-tuning of SPOT, the
regularization weight � is linearly de-
cayed to one-fifth of its initial value.
See Appendix C.3 for details.

Results are shown in Table 4. While online training from scratch fails in the challenging sparse
reward tasks on AntMaze domains, SPOT initialized with offline RL succeeds to learn nearly optimal

9

Figure 2: Percent difference of the performance of an ablation of SPOT, compared with the original
algorithm. Hc = HalfCheetah, H = Hopper, W = Walker, me = medium-expert, m = medium, mr
= medium-replay. Am = AntMaze, u = umaze, m = medium, l = large, d = diverse, p = play.
Implementation details and quantitative results can be found in Appendix C.2.

several key native designs of TD3 are beneficial to offline RL. (1). For the case of learning a stochastic
policy without entropy regularization, we find that the learned policy quickly degenerates into a
deterministic one (with near-zero standard deviation). A concern with deterministic policies is that
they are prone to overfit overestimated actions and propagate the estimation error through Bellman
backups, which is even serious in offline RL. Hopefully, TD3 introduces Target Policy Smoothing
[9, 44] into Eq. (1), which adds random noise to target actions and can alleviate the effect of error
propagation. (2). For the case with entropy regularization, Bellman backup of a stochastic policy
resembles Target Policy Smoothing, then the primary distinction may come from the actor learning
objective. While TD3 produces a deterministic action minimizing Eq. (9), stochastic policies are more
likely to produce out-of-distribution actions with erroneous estimated values, so the policy gradient
may become biased as well as with high variance. On much easier Gym-MuJoCo domains, SAC-style
SPOT variants are comparable to the TD3 variant on most of the datasets, but we remark that TD3
indeed extends the limit of policy constraint methods on some tasks, such as hopper-medium. Our
analysis suggests that TD3 may be preferable for offline RL as the base off-policy method with native
designs (such as “stochastic” critic training and deterministic actor training) addressing function
approximation error not only in the online setting but also in the offline setting [8].

5.3 Online Fine-tuning after Offline RL

Pluggable SPOT can be online fine-tuned seamlessly, which means that we only need to gradually
decay the constraint strength � in the online phase in order to avoid excessive conservatism. As
AWAC [35] shows that behavior models are hard to update online, we fix the VAE during online
fine-tuning. Note that when � is zero, our algorithm is exactly the standard off-policy RL algorithm
that SPOT builds upon. It is beneficial since we enjoy a minimal gap between offline RL and
well-established online RL methods and can take full advantage of them for online fine-tuning.

Table 4: Online fine-tuning results on AntMaze tasks, show-
ing initial performance after offline RL and performance after
1M steps of online RL. All numbers are reported by the mean
of 5 seeds.

IQL SPOT (Ours)

umaze-v2 85.4 ! 96.2 93.2 ! 99.2 (+3.0)
umaze-diverse-v2 70.8 ! 62.2 41.6 ! 96.0 (+33.8)
medium-play-v2 68.6 ! 89.8 75.2 ! 97.4 (+7.6)
medium-diverse-v2 73.4 ! 90.2 73.0 ! 96.2 (+6.0)
large-play-v2 40.0 ! 78.6 40.8 ! 89.4 (+10.8)
large-diverse-v2 40.4 ! 73.4 44.0 ! 90.8 (+17.4)

AntMaze total 378.6 ! 490.4 367.8 ! 569.0 (+78.6)

Since IQL [25] is the strongest base-
line in our offline experiments, which
also has shown superior online per-
formance than prior methods [35, 28]
in its paper, and most of the other
baselines fail to learn meaningful re-
sults, we follow the experiments of
IQL and compare to IQL in online
fine-tuning. We also compare to our
base RL method TD3 [9] trained on-
line from scratch. We use the chal-
lenging AntMaze domains [6]. Dur-
ing online fine-tuning of SPOT, the
regularization weight � is linearly de-
cayed to one-fifth of its initial value.
See Appendix C.3 for details.

Results are shown in Table 4. While online training from scratch fails in the challenging sparse
reward tasks on AntMaze domains, SPOT initialized with offline RL succeeds to learn nearly optimal

9

• Gaussian density estimation

degrades the performance on

datasets with complex behaviors.

• Q normalization makes an

insignificant impact on total

performance

• TD3 may be preferable with native

designs addressing function

approximation error

Online Fine-tuning on D4RL-AntMaze

Figure 2: Percent difference of the performance of an ablation of SPOT, compared with the original
algorithm. Hc = HalfCheetah, H = Hopper, W = Walker, me = medium-expert, m = medium, mr
= medium-replay. Am = AntMaze, u = umaze, m = medium, l = large, d = diverse, p = play.
Implementation details and quantitative results can be found in Appendix C.2.

several key native designs of TD3 are beneficial to offline RL. (1). For the case of learning a stochastic
policy without entropy regularization, we find that the learned policy quickly degenerates into a
deterministic one (with near-zero standard deviation). A concern with deterministic policies is that
they are prone to overfit overestimated actions and propagate the estimation error through Bellman
backups, which is even serious in offline RL. Hopefully, TD3 introduces Target Policy Smoothing
[9, 44] into Eq. (1), which adds random noise to target actions and can alleviate the effect of error
propagation. (2). For the case with entropy regularization, Bellman backup of a stochastic policy
resembles Target Policy Smoothing, then the primary distinction may come from the actor learning
objective. While TD3 produces a deterministic action minimizing Eq. (9), stochastic policies are more
likely to produce out-of-distribution actions with erroneous estimated values, so the policy gradient
may become biased as well as with high variance. On much easier Gym-MuJoCo domains, SAC-style
SPOT variants are comparable to the TD3 variant on most of the datasets, but we remark that TD3
indeed extends the limit of policy constraint methods on some tasks, such as hopper-medium. Our
analysis suggests that TD3 may be preferable for offline RL as the base off-policy method with native
designs (such as “stochastic” critic training and deterministic actor training) addressing function
approximation error not only in the online setting but also in the offline setting [8].

5.3 Online Fine-tuning after Offline RL

Pluggable SPOT can be online fine-tuned seamlessly, which means that we only need to gradually
decay the constraint strength � in the online phase in order to avoid excessive conservatism. As
AWAC [35] shows that behavior models are hard to update online, we fix the VAE during online
fine-tuning. Note that when � is zero, our algorithm is exactly the standard off-policy RL algorithm
that SPOT builds upon. It is beneficial since we enjoy a minimal gap between offline RL and
well-established online RL methods and can take full advantage of them for online fine-tuning.

Table 4: Online fine-tuning results on AntMaze tasks, show-
ing initial performance after offline RL and performance after
1M steps of online RL. All numbers are reported by the mean
of 5 seeds.

IQL SPOT (Ours)

umaze-v2 85.4 ! 96.2 93.2 ! 99.2 (+3.0)
umaze-diverse-v2 70.8 ! 62.2 41.6 ! 96.0 (+33.8)
medium-play-v2 68.6 ! 89.8 75.2 ! 97.4 (+7.6)
medium-diverse-v2 73.4 ! 90.2 73.0 ! 96.2 (+6.0)
large-play-v2 40.0 ! 78.6 40.8 ! 89.4 (+10.8)
large-diverse-v2 40.4 ! 73.4 44.0 ! 90.8 (+17.4)

AntMaze total 378.6 ! 490.4 367.8 ! 569.0 (+78.6)

Since IQL [25] is the strongest base-
line in our offline experiments, which
also has shown superior online per-
formance than prior methods [35, 28]
in its paper, and most of the other
baselines fail to learn meaningful re-
sults, we follow the experiments of
IQL and compare to IQL in online
fine-tuning. We also compare to our
base RL method TD3 [9] trained on-
line from scratch. We use the chal-
lenging AntMaze domains [6]. Dur-
ing online fine-tuning of SPOT, the
regularization weight � is linearly de-
cayed to one-fifth of its initial value.
See Appendix C.3 for details.

Results are shown in Table 4. While online training from scratch fails in the challenging sparse
reward tasks on AntMaze domains, SPOT initialized with offline RL succeeds to learn nearly optimal

9

• Strong offline2online performance

• A minimal gap between offline RL and well-established online RL methods

Restore
to off-policy
algorithm

Computational Efficiency
policies and performs significantly better than the strongest baseline IQL, especially in the most
difficult large maze.

5.4 Computation Cost

SPOT (Ours)

Figure 3: Runtime of various offline RL algorithms
interacting with the HalfCheetah environment to
produce a 1000-steps trajectory. See Appendix C.5
for the details.

Regularization methods, including our SPOT,
benefiting from the pluggable design, only need
one forward pass of the policy network to do in-
ference, while parameterization methods always
need inference through secondary components,
such as the generative model or the critic net-
work, which may bring extra time or memory
cost. As demonstrated empirically in Figure
3, parameterization methods are usually slower
than regularization methods. TD3+BC and our
SPOT run more than two times faster compared
to the most time-consuming BCQ, while SPOT
also has the advantage of parameterization meth-
ods, which explicitly constrain the behavior den-
sity of learned actions.

SPOT indeed adds some training overhead due to the VAE-based density estimator, but is still much
simpler than most methods. A comparison of training time is provided in Appendix C.5. SPOT lies
in the second tier, only slightly worse than PLAS and beaten by the simplest TD3+BC.

6 Conclusion

We present Supported Policy OpTimization (SPOT), a policy constraint method to offline RL built
upon off-the-shelf off-policy RL algorithms. SPOT introduces a pluggable regularization term applied
directly to the estimated behavior density, which brings a number of important benefits. First, our
algorithm is computationally efficient at inference, which only needs one forward process of the
policy network for action selection. Second, capturing the standard formulation of the support
constraint based on behavior density, it obtains excellent performance across different tasks in the
D4RL benchmarks, including standard Gym-MuJoCo tasks and much more challenging AntMaze
tasks. Finally, the pluggable design of our algorithm makes it seamless to apply online fine-tuning
after offline RL pre-training. Taking full advantage of well-established online methods, SPOT exceeds
the state-of-the-art online fine-tuning performance on the challenging AntMaze domains.

Limitations. One limitation of our current method, shared by most policy constraint methods, is that
the performance may be limited by the accuracy of estimation of the behavior policy. Advances in
generative models, such as diffusion models [14, 46, 4], may improve the real-world performance
of offline RL, especially in scenarios with highly multimodal behaviors. An exciting direction for
future work would be to develop an effective pluggable constraint mechanism excluding explicit
estimation of behavior policy. Another limitation of our work is that we rely on online evaluation to
select the best set of hyperparameters. Although this evaluation protocol is commonly adopted by the
literature of offline RL, extensive online evaluation is not practical in real-world applications and
online evaluation budgets may have a significant impact on final performance [23, 29]. Specifically
for SPOT, the selection of regularization weight without requirements for extensive online evaluation
is critical and needs to be developed, either by offline policy evaluation [36], by manual tuning based
on offline training metrics and conditions [27], or by auto-tuning with a dual optimization [13].

Acknowledgments

We would like to thank many colleagues, in particular, Jincheng Zhong, Haoyu Ma, Yiwen Qiu, and
Yuchen Zhang for their valuable discussion and support for this work. This work was supported by
the National Key Research and Development Plan (2020AAA0109201), National Natural Science
Foundation of China (62022050 and 62021002), Beijing Nova Program (Z201100006820041), and
BNRist Innovation Fund (BNR2021RC01002).

10

C.5 Computation Cost

Inferece time (Figure 3). We evaluate the runtime of different offline RL methods, that interact with
the HalfCheetah environment to produce a full 1000-steps trajectory. For parameterization methods,
we evaluate BCQ (num. of sampled actions N = 100) [10], PLAS [52], EMaQ (num. of sampled
actions N = 100) [12] and for regularization methods, we evaluate BEAR (num. of sampled actions
p = 10) [26], TD3+BC [8] and our SPOT. All numbers of runtime of Figure 3 are the mean of 100
trajectories. We compare different methods with consistent model size to ensure fairness.

Train time. Table 9 presents train time of 1M steps of various offline RL algorithms. All train time
experiments were run with author-provided implementations on a single TITAN V GPU and Intel
Xeon Gold 6130 CPU at 2.10GHz.

Table 9: Train time of 1M steps of various offline RL algorithms.

BCQ BEAR PLAS CQL TD3+BC SPOT

Train time 5h 25m 12h 30m 3h 5m 14h 20m 1h 58m 3h 25m

D Broader Impact

Social impacts. Offline reinforcement learning has the potential to enable or scale-up practical
applications for reinforcement learning, such as robotics, recommendation, healthcare, or educational
applications, where data collecting is always expensive or risky, and offline logged data can lead to a
better real-world performance by either pure offline or offline2online learning. A limitation to offline
RL is that the learned policy, regularized by the offline data, may contain biases originally from the
data-collecting policy.

Academic research. Developing a simple and effective offline RL algorithm is the primary aim
behind our work. We situate our work in the literature on policy constraint methods for offline
RL, covering discussion w.r.t empirical performance, implementation simplicity, and computation
efficiency. We identify that a standard off-policy RL algorithm plugged with a VAE-based explicit
support constraint is sufficient for exceeding most of substantially more complicated methods on
both standard and challenging benchmarks, which may encourage researchers to revisit the progress
of offline RL and derive new and better offline RL methods.

22

• One forward pass of the policy

network to do inference

• Indeed add training overhead

due to the VAE-based density

estimator

Summary

• Benefits

• Excellent offline RL performance

• Strong offline2online RL performance

• Computational efficiency at inference

• Limitations

• Limited by the accuracy of behavior policy estimation

• Future work: stronger generative model

• Hyperparameter selection with online evaluation

• Future work: offline policy evaluation, offline manual or auto-tuning

① Pluggable regularization

② Explicit Behavior Estimation

Thank You!
wujialong0229@gmail.com

