
Supported Policy Optimization for Offline Reinforcement Learning
Jialong Wu, Haixu Wu, Zihan Qiu, Jianmin Wang, Mingsheng Long

Introduction

▶ Offline reinforcement learning eliminates the need to interact with the live
environment, which is always expensive or risky in practical scenarios.
▶ Autonomous driving, healthcare, education, advertising, etc.

!"
Dataset
!

!
Learn

Collecting Data with)%

!

Deployment with)

!, #

$

Experience Data {(!, #, !!, ")}

!, #

$

▶ Challenges: Extrapolation error of Q estimation queried by OOD actions

▶ Support constraint: πϕ(s) ∈ {a : πβ(a|s) > ϵ} ∀s

▶ Policy constraint methods: Parameterization vs Regularization

Parameterization Regularization

Pros Direct constraint Pluggable design

Cons

- Extra inference costs
- Implementation difficulties
- Complicates transfer of
design techniques

Divergence-based regularization
may mismatch density-based
formalization of support
constraint

▶ Contributions:
▶ Regularization term which directly regularizes the behavior density of actions

taken by the learned policy

▶ Supported Policy OpTimization (SPOT), a practical algorithm with a neural
VAE-based density estimator

▶ Strong experimental results for offline RL and online fine-tuning on standard
offline RL benchmarks

Support Constraint via Behavior Density

▶ Policy optimization with behavior density as constraint

max
ϕ

Es∼D [Qθ(s, πϕ(s))]

s.t. min
s

log πβ(πϕ(s)|s) > ϵ̂,
(1)

▶ Heuristic approximation: widely adopted by both online RL and offline RL
w.r.t. constrained policy optimization.

max
ϕ

Es∼D [Qθ(s, πϕ(s))]

s.t. Es∼D [log πβ(πϕ(s)|s)] > ϵ̂.
(2)

▶ Policy learning objective: a pluggable regularization applied directly to
behavior density

Jπ(ϕ) = Es∼D [−Qθ (s, πϕ(s))−λ log πβ (πϕ(s)|s)] , (3)

Explicit Estimation of Behavior Density

▶ Modeled by Conditional Variational Auto-Encoder (CVAE)

πβ(a|s) ≈ pψ(a|s) =
∫

pψ(a|z , s)p(z |s)dz (4)

▶ Optimization with evidence lower bound (ELBO)

log pψ(a|s) ≥ Eqφ(z |a,s)

[
log

pψ(a, z |s)
qφ(z |a, s)

]
= Eqφ(z |a,s) [log pψ(a|z , s)]− KL [qφ(z |a, s)∥p(z |s)]
def
= −LELBO(s, a;φ, ψ).

(5)

▶ Density estimation with importance sampling (Rezende et al., 2014)

log pψ(a|s) = logEqφ(z |a,s)

[
pψ(a, z |s)
qφ(z |a, s)

]
≈ Ez (l)∼qφ(z |a,s)

log 1
L

L∑
l=1

pψ(a, z
(l)|s)

qφ(z (l)|a, s)

def
= l̂og πβ(a|s;φ, ψ, L).

(6)

▶ Policy learning objective with density estimator

Jπ(ϕ) = Es∼D

[
−Qθ (s, πϕ(s))− λl̂og πβ(πϕ(s)|s;φ, ψ, L)

]
. (7)

Overall Algorithm: Supported Policy Optimization

Algorithm 1 Supported Policy Optimization (SPOT)

Input: Dataset D = {(s, a, r , s ′)}
// Density Estimation with VAE
Initialize VAE with parameters ψ and φ
for t = 1 to T1 do
Sample minibatch of transitions (s, a) ∼ D
Update ψ, φ minimizing LELBO(s, a;φ, ψ) in Eq. (5)
end for
// Actor-Critic with Plugged Regularization
Initialize the policy network πϕ, critic network Qθ and target network Qθ̄ with
θ̄ ← θ
for t = 1 to T2 do
Sample minibatch of transitions (s, a, r , s ′) ∼ D
Update θ minimizing JQ(θ) = E(s,a,r ,s ′)∼D [Qθ(s, a)− r − γQθ̄ (s

′, πϕ(s
′))]2

Update ϕ minimizing Jπ(ϕ) in Eq. (7)
Update target network: θ̄ ← τθ + (1− τ)θ̄
end for =0

Practical Implementation

▶ Base algorithm: TD3

▶ Q normalization: following TD3+BC (Fujimoto & Gu, 2021)

▶ Simpler density estimator: empirically find no further improvement with
larger L compared to L = 1 (ELBO estimator)

Comparisons on Offline RL Benchmarks

HalfCheetah Hopper Walker2d Ant Large maze

▶ D4RL-Gym-MuJoCo: SPOT demonstrates the state-of-the-art performance,
especially on suboptimal datasets.

Table: Performance of SPOT and prior methods on Gym-MuJoCo tasks*.

BC AWAC DT Onestep TD3+BC CQL IQL SPOT

HalfCheetah-m-e-v2 55.2 42.8 86.8 93.4 90.7 91.6 86.7 86.9±4.3
Hopper-m-e-v2 52.5 55.8 107.6 103.3 98.0 105.4 91.5 99.3±7.1
Walker-m-e-v2 107.5 74.5 108.1 113.0 110.1 108.8 109.6 112.0±0.5

HalfCheetah-m-v2 42.6 43.5 42.6 48.4 48.3 44.0 47.4 58.4±1.0
Hopper-m-v2 52.9 57.0 67.6 59.6 59.3 58.5 66.2 86.0±8.7
Walker-m-v2 75.3 72.4 74.0 81.8 83.7 72.5 78.3 86.4±2.7

HalfCheetah-m-r-v2 36.6 40.5 36.6 38.1 44.6 45.5 44.2 52.2±1.2
Hopper-m-r-v2 18.1 37.2 82.7 97.5 60.9 95.0 94.7 100.2±1.9
Walker-m-r-v2 26.0 27.0 66.6 49.5 81.8 77.2 73.8 91.6±2.8

Gym-MuJoCo total 466.7 450.7 672.6 684.6 677.4 698.5 692.4 773.0±30.2

* m = medium, m-r = medium-replay, m-e = medium-expert.

▶ D4RL-AntMaze: SPOT obtains strong performance with a simple design.

Table: Performance of SPOT and prior methods on AntMaze tasks.

BCQ BEAR BC DT TD3+BC PLAS CQL IQL SPOT

umaze-v2 78.9 73.0 49.2 54.2 73.0 62.0 82.6 89.6 93.5±2.4
umaze-diverse-v2 55.0 61.0 41.8 41.2 47.0 45.4 10.2 65.6 40.7±5.1
medium-play-v2 0.0 0.0 0.4 0.0 0.0 31.4 59.0 76.4 74.7±4.6
medium-diverse-v2 0.0 8.0 0.2 0.0 0.2 20.6 46.6 72.8 79.1±5.6
large-play-v2 6.7 0.0 0.0 0.0 0.0 2.2 16.4 42.0 35.3±8.3
large-diverse-v2 2.2 0.0 0.0 0.0 0.0 3.0 3.2 46.0 36.3±13.7

AntMaze total 142.8 142.0 91.6 95.4 120.2 164.6 218.0 392.4 359.6±39.7

Online Fine-tuning after Offline RL

▶ Well-suited for online fine-tuning: A minimal gap between offline RL and
well-established online RL method.

▶ D4RL-AntMaze: SPOT achieves superior online fine-tuning performance
over the state-of-the-art method.

Table: Online fine-tuning results on AntMaze tasks*.

IQL SPOT

umaze-v2 85.4 → 96.2 93.2 → 99.2 (+3.0)
umaze-diverse-v2 70.8 → 62.2 41.6 → 96.0 (+33.8)
medium-play-v2 68.6 → 89.8 75.2 → 97.4 (+7.6)
medium-diverse-v2 73.4 → 90.2 73.0 → 96.2 (+6.0)
large-play-v2 40.0 → 78.6 40.8 → 89.4 (+10.8)
large-diverse-v2 40.4 → 73.4 44.0 → 90.8 (+17.4)

AntMaze total 378.6 → 490.4 367.8 → 569.0 (+78.6)

* showing initial performance after offline RL and performance after 1M steps of online RL.

School of Software - BNRist - Tsinghua University - China Code: https://github.com/thuml/SPOT Mail: wujialong0229@gmail.com

