

Supported Policy Optimization for Offline Reinforcement Learning Jialong Wu, Haixu Wu, Zihan Qiu, Jianmin Wang, Mingsheng Long

Introduc

- ► Offline environn
- Autor

- Challen
- Suppor
- Policy

tion	Explicit Estimation of Behavior Density
reinforcement learning eliminates the need to interact with the live	Modeled by Conditional Variational Aut
ment, which is always expensive or risky in practical scenarios. nomous driving, healthcare, education, advertising, etc.	$\pi_{eta}(a s) pprox p_{\psi}(a s) = \int p_{\psi}(a s)$
Experience Data $\{(s, a, s', r)\}$	Optimization with evidence lower bound
$ \begin{array}{c} \overbrace{s,r}\\ \overbrace{a}\\ \hline \\ \hline$	$\log p_{\psi}(a s) \geq \mathbb{E}_{q_{\varphi}(z a,s)} \left[\log \frac{p_{\psi}(a,z s)}{q_{\varphi}(z a,s)} \right]$ $= \mathbb{E}_{q_{\varphi}(z a,s)} \left[\log p_{\psi}(a z,s) \right]$ $\stackrel{\text{def}}{=} -\mathcal{L}_{\text{ELBO}}(s,a;\varphi,\psi).$ $\blacktriangleright \text{ Density estimation with importance sam}$ $\log p_{\psi}(a s) = \log \mathbb{E}_{\varphi}(z s) = \log \mathbb{E}_{\varphi}(z s) = \log \mathbb{E}_{\varphi}(z s)$
nges: Extrapolation error of Q estimation queried by OOD actions	$\log p_{\psi}(a s) = \log \max_{q_{\varphi}(z a,s)} \left[q_{\varphi}(z a,s) \right]$
rt constraint : $\pi_{\phi}(s) \in \{a : \pi_{\beta}(a s) > \epsilon\} \forall s$	$pprox \mathbb{E}_{z^{(\prime)} \sim q_{arphi}(z a,s)} \log \overline{z}$
constraint methods: Parameterization vs Regularization	$\frac{\text{def}}{\log \pi_{0}} \left(2 c c a c a c a b c a b c a b c a b c a b b c a c a c a c a c a b c a c a b c a c c$
ParameterizationRegularizationProsDirect constraintPluggable design- Extra inference costsDivergence-based regularization- Implementation difficultiesmay mismatch density-based- Complicates transfer offormalization of support	► Policy learning objective with density es $J_{\pi}(\phi) = \mathbb{E}_{s \sim \mathcal{D}} \left[-Q_{\theta} \left(s, \pi_{\phi}(s) \right) - \lambda \right]$
design techniques constraint	Overall Algorithm: Supported Policy Opti
larization term which directly regularizes the behavior density of actions by the learned policy orted Policy OpTimization (SPOT), a practical algorithm with a neural based density estimator og experimental results for offline RL and online fine-tuning on standard e RL benchmarks	Algorithm I Supported Policy Optimization (SPC Input: Dataset $\mathcal{D} = \{(s, a, r, s')\}$ // Density Estimation with VAE Initialize VAE with parameters ψ and φ for $t = 1$ to T_1 do Sample minibatch of transitions $(s, a) \sim \mathcal{D}$ Update ψ, φ minimizing $\mathcal{L}_{\text{ELBO}}(s, a; \varphi, \psi)$ in Eq
Constraint via Behavior Density	end for // Actor-Critic with Plugged Regularization
optimization with behavior density as constraint $\max_{\phi} \mathbb{E}_{s \sim \mathcal{D}} \left[Q_{\theta}(s, \pi_{\phi}(s)) \right]$ s.t. min log $\pi_{\beta}(\pi_{\phi}(s) s) > \hat{\epsilon}$, (1)	Initialize the policy network π_{ϕ} , critic network $\overline{\theta} \leftarrow \theta$ for $t = 1$ to T_2 do Sample minibatch of transitions $(s, a, r, s') \sim T$
tic approximation : widely adopted by both online RL and offline RL onstrained policy optimization.	Update θ minimizing $J_Q(\theta) = \mathbb{E}_{(s,a,r,s')\sim \mathcal{D}}[Q_{\theta}(s, Q_{\theta})]$ Update ϕ minimizing $J_{\pi}(\phi)$ in Eq. (7) Update target network: $\overline{\theta} \leftarrow \tau \theta + (1 - \tau)\overline{\theta}$ end for =0
$ \int_{\phi} \left[\nabla_{\theta}(s, \pi_{\phi}(s)) \right] $ $ \text{s.t. } \mathbb{E}_{s \sim \mathcal{D}} \left[\log \pi_{\beta}(\pi_{\phi}(s) s) \right] > \hat{\epsilon}. $ $ (2) $	Practical Implementation
Learning objective: a pluggable regularization applied directly to	Base algorithm: TD3
r density	Q normalization: following TD3+BC (Fujim
$J_{\pi}(\phi) = \mathbb{E}_{s \sim \mathcal{D}}\left[-Q_{\theta}\left(s, \pi_{\phi}(s)\right) - \lambda \log \pi_{\beta}\left(\pi_{\phi}(s) s\right)\right], \tag{3}$	Simpler density estimator: empirically find larger L compared to $L = 1$ (ELBO estimator)

Contrib

- Regulation taken
- Support VAE-b
- ► Strong offline
- Support
- Policy

$$\max_{\phi} \mathbb{E}_{s \sim \mathcal{D}} \left[Q_{\theta}(s, \pi_{\phi}(s)) \right]$$

s.t.
$$\min_{s} \log \pi_{\beta}(\pi_{\phi}(s)|s) > \hat{\epsilon},$$

► Heurist w.r.t. co

Policy behavior

to-Encoder (CVAE)

(a|z,s)p(z|s)dz(4)

d (ELBO)

- KL
$$[q_{\varphi}(z|a,s) \| p(z|s)]$$
 (5)

$$\begin{bmatrix} \mathbf{pling} & (\text{Rezende et al., 2014}) \\ \hline (z|s) \\ \hline (a,s) \end{bmatrix}$$

$$\begin{bmatrix} L \\ p_{\psi}(a, z^{(l)}|s) \\ \hline q_{\varphi}(z^{(l)}|a,s) \end{bmatrix}$$
(6)

$$\widehat{\mathbf{g}\,\pi_{\beta}}(\pi_{\phi}(s)|s;\varphi,\psi,L)\Big]\,.\tag{7}$$

imization

OT)

q. (5)

on

 $Q_{ heta}$ and target network $Q_{ar{ heta}}$ with

$$a) - r - \gamma Q_{\overline{ heta}}(s', \pi_{\phi}(s'))]^2$$

moto & Gu, 2021)

no further improvement with

HalfCheetah Hopper

D4RL-Gym-MuJoCo: SPOT demonstrates the state-of-the-art performance, especially on suboptimal datasets.

BC AWAC DT Onestep TD3+BC CQL IQL SPO HalfCheetah-m-e-v2 55.2 42.8 86.8 93.4 90.7 91.6 86.7 86.9± Hopper-m-e-v2 52.5 55.8 107.6 103.3 98.0 105.4 91.5 99.3± Walker-m-e-v2 107.5 74.5 108.1 113.0 110.1 108.8 109.6 112.0± HalfCheetah-m-v2 42.6 43.5 42.6 48.4 48.3 44.0 47.4 58.4±									
HalfCheetah-m-e-v255.242.886.893.490.791.686.786.9 \pm Hopper-m-e-v252.555.8107.6103.398.0105.491.599.3 \pm Walker-m-e-v2107.574.5108.1113.0110.1108.8109.6112.0 \pm HalfCheetah-m-v242.643.542.648.448.344.047.458.4 \pm		BC /	AWAC	DT	Onestep	TD3+BC	CQL	IQL	SPOT
Hopper-m-e-v252.555.8107.6103.398.0105.491.599.3 \pm Walker-m-e-v2107.574.5108.1113.0110.1108.8109.6112.0 \pm HalfCheetah-m-v242.643.542.648.448.344.047.458.4 \pm	lalfCheetah-m-e-v2	55.2	42.8	86.8	93.4	90.7	91.6	86.7	86.9±4.3
Walker-m-e-v2107.574.5108.1 113.0 110.1108.8109.6112.0HalfCheetah-m-v242.643.542.648.448.344.0 47.4 58.4	lopper-m-e-v2	52.5	55.8	107.6	103.3	98.0	105.4	91.5	$99.3{\pm}7.1$
HalfCheetah-m-v2 426 435 426 484 483 440 474 58 A_{+}	Valker-m-e-v2	107.5	74.5	108.1	113.0	110.1	108.8	109.6	$112.0{\pm}0.5$
$ \mathbf{u} = \mathbf{u} $	lalfCheetah-m-v2	42.6	43.5	42.6	48.4	48.3	44.0	47.4	58.4 ±1.0
Hopper-m-v2 52.9 57.0 67.6 59.6 59.3 58.5 66.2 86.0 ±	lopper-m-v2	52.9	57.0	67.6	59.6	59.3	58.5	66.2	86.0 ±8.7
Walker-m-v2 75.3 72.4 74.0 81.8 83.7 72.5 78.3 86.4 ±	Valker-m-v2	75.3	72.4	74.0	81.8	83.7	72.5	78.3	86.4±2.7
HalfCheetah-m-r-v2 36.6 40.5 36.6 38.1 44.6 45.5 44.2 52.2 ±	lalfCheetah-m-r-v2	36.6	40.5	36.6	38.1	44.6	45.5	44.2	52.2 ±1.2
Hopper-m-r-v2 18.1 37.2 82.7 97.5 60.9 95.0 94.7 100.2 :	lopper-m-r-v2	18.1	37.2	82.7	97.5	60.9	95.0	94.7	100.2 ±1.9
Walker-m-r-v2 26.0 27.0 66.6 49.5 81.8 77.2 73.8 91.6 ±	Valker-m-r-v2	26.0	27.0	66.6	49.5	81.8	77.2	73.8	91.6 ±2.8
Gym-MuJoCo total 466.7 450.7 672.6 684.6 677.4 698.5 692.4 773.0	Sym-MuJoCo total	466.7	450.7	672.6	684.6	677.4	698.5	692.4	773.0 ±30.2

Table: Performance of SPG

				•					
	BCQ	BEAR	BC	DT	TD3+BC	PLAS	CQL	IQL	SPOT
umaze-v2	78.9	73.0	49.2	54.2	73.0	62.0	82.6	89.6	93.5 ±2.4
umaze-diverse-v2	55.0	61.0	41.8	41.2	47.0	45.4	10.2	65.6	$40.7{\scriptstyle\pm5.1}$
medium-play-v2	0.0	0.0	0.4	0.0	0.0	31.4	59.0	76.4	$74.7{\pm}4.6$
medium-diverse-v2	0.0	8.0	0.2	0.0	0.2	20.6	46.6	72.8	79.1 ±5.6
large-play-v2	6.7	0.0	0.0	0.0	0.0	2.2	16.4	42.0	35.3±8.3
large-diverse-v2	2.2	0.0	0.0	0.0	0.0	3.0	3.2	46.0	36.3 ±13.7
AntMaze total	142.8	142.0	91.6	95.4	120.2	164.6	218.0	392.4	359.6±39.7

Online Fine-tuning after Offline RL

- well-established online RL method.
- over the state-of-the-art method.

Table: Online fine-tuning results on AntMaze tasks^{*}.

umaze-v2 umaze-diverse-v2 medium-play-v2 medium-diverse-v2 large-play-v2 large-diverse-v2 AntMaze total

* showing initial performance after offline RL and performance after 1M steps of online RL.

Comparisons on Offline RL Benchmarks

Walker2d

Ant

Large maze

Table: Performance of SPOT and prior methods on Gvm-MuJoCo tasks*

* m = medium, m-r = medium-replay, m-e = medium-expert.

D4RL-AntMaze: SPOT obtains strong performance with a simple design.

OT	and	prior	methods	on	${\sf AntMaze}$	tasks
----	-----	-------	---------	----	-----------------	-------

► Well-suited for online fine-tuning: A minimal gap between offline RL and

D4RL-AntMaze: SPOT achieves superior online fine-tuning performance

IQL	SPOT
85.4 ightarrow 96.2	93.2 ightarrow 99.2 (+3.0)
70.8 → 62.2	41.6 ightarrow 96.0 (+33.8)
68.6 ightarrow 89.8	$75.2 \rightarrow 97.4 \; (+7.6)$
73.4 → 90.2	73.0 → 96.2 (+6.0)
40.0 ightarrow 78.6	$40.8 \rightarrow 89.4 \; (+10.8)$
40.4 ightarrow 73.4	${\bf 44.0} \rightarrow {\bf 90.8}\;(+17.4)$
378.6 → 490.4	367.8 → 569.0 (+78.6)