D Trajectory World Models

for Heterogeneous Environments
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Method: TrajWorld (Trajectory World Models)

Overview:

Motivation:

World models are all with videos or language?

No modality in world models should be left behind,
including essential sensor information represented as
low-dimensional vectors!

How can we pre-train a world model to extract shared

knowledge from trajectories across heterogeneous
environments?

TrajWorld, designed for flexibility in handling divergent state and action
definitions, is capable of flexibly handling varying sensor and actuator
information and capturing environment dynamics in-context.
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Intuition:

1. Rediscovering homogeneity in scalars.

2. ldentifying environment through historical context.

3. Inductive bias for two-dimensional representations.

Interleaved temporal-variate attentions:

1. temporal attention
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2. variate attention
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Off-Policy Evaluation (OPE)
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Environment: Walker
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Towards multimodal world models incorporating
proprioceptive, visual and linguistical
observations

Environment: HalfCheetah
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