

Trajectory World Models for Heterogeneous Environments

Shaofeng Yin*, Jialong Wu*, Siqiao Huang, Xingjian Su, Xu He, Jianye Hao, Mingsheng Long#

Motivation: Heterogeneity inherent in sensor and actuator information

Motivation:

World models are all with videos or language?

No modality in world models should be left behind, including essential sensor information represented as low-dimensional vectors!

How can we pre-train a world model to extract shared knowledge from trajectories across heterogeneous environments?

Method: TrajWorld (Trajectory World Models)

Overview:

TrajWorld, designed for flexibility in handling divergent state and action definitions, is capable of flexibly handling varying sensor and actuator information and capturing environment dynamics in-context.

Intuition:

- 1. Rediscovering homogeneity in scalars.
- 2. Identifying environment through historical context.
- 3. Inductive bias for two-dimensional representations.

Interleaved temporal-variate attentions:

1. temporal attention

 $U_{1:T,j}^l = \text{CausalAttention}(Z_{1:T,j}^{l-1}), \quad \forall j \in [M]$

2. variate attention

 $V_{i,1:M}^l = \text{Attention}(\hat{U}_{i,1:M}^l), \quad \forall i \in [T].$

Experiments

Transition Prediction

Mean Absolute Error \$\) 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Model Predictive Control (MPC)

Zero-Shot Transfer

Vision of the future

Towards multimodal world models incorporating proprioceptive, visual and linguistical observations

Attention Analysis