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Introduction

» World models: Internal models of how the world works
» Two key tasks in world model learning:
» Observation Modeling: how the environment transits and is observed.
» Reward Modeling: how the task has been progressed.
» Provide a unified multi-task view of MBRL.
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» Explicit MBRL: Learns an exact duplicate of the environment.

» Typically dominated by observation modeling.

» Limited by environment complexity (irrelevant details) and model capacity.
» Implicit MBRL: Learns only task-centric world models.

» Relies solely on reward modeling to achieve value equivalence.
» Limited by sparse learning signals from a single scalar reward.

Research Problem

How do model-based RL methods properly exploit the intrinsic
multi-task benefits within world model learning?

\. y

» Contributions:
» A systematic analysis of deficiencies brought by task domination.
» HarmonyDream, a simple but effective method to mitigate domination.
» Significant improvement of sample efficiency on various domains

Overview of World Model Learning
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Loss Scale

loss aggregates H x W x C dimensions,
while reward is only a scalar.

» Typical practice: Approximately equal weights w, = w, = wy = 1,
overlooking the imbalanced nature of world model learning.

There exists potential benefits of multi-task learning yet to be exploited.
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Dive Into World Model Learning

Finding 1

\

Leveraging the reward loss by adjusting its coefficient in world model
learning has a great impact on the sample efficiency of model-based agents.
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Finding 2
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Domination of observation modeling can result in world models establishing
spurious correlations without realizing incorrect reward predictions.

Reconstruction

b 0. 733 [N 0. 551 |

1)

- R 2B

(W,

Dreamer

e 0 - 850 [N 0. 567 |§

Dreamer
(w, = 100)

Finding 3
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Learning signal of world models from rewards alone without observations is
inadequate for sample-efficient model-based learning.
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Scale losses to the same constant to harmonize interactions between tasks.

HarmonyDream
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» Harmonious loss:
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» Variational approach: Dynamically adjusting o towards
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Harmonizers
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» Additional rectification: Prevent extremely large loss weights.

Code: https://github.com/thuml/HarmonyDream
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Experiment Results

Meta-world

HarmonyDream: Task Harmonization Inside World Models
Haoyu Ma*, Jialong Wu™, Ningya Feng, Chenjun Xiao, Dong Li, Jianye Hao, Jianmin Wang, Mingsheng Long
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Distracted DMC variants
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Atari Minecraft

» Meta-world & RLBench: Simply adding harmonizers, HarmonyDream shows
superior performance in terms of both sample efficiency and final success rate.
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» Distracted control: HarmonyDream bypasses distractors in observations and
can learn task-centric transitions more easily.
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» Video games: HarmonyDream further unleashes the potentials of DreamerV3,
setting a new state of the art on Atari 100k, and greatly improving on Minecraft.
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» Fine-grained task-relevant observations: Robotic manipulation tasks and video
games require accurately modeling interactions with small objects.

» Highly varied task-irrelevant observations: Redundant visual components can
easily distract agents if task-relevant information is not emphasized correctly.

» Hybrid of both: More difficult open-world tasks (e.g., Minecraft) can encounter
both, including small target entities and abundant visual details.
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