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Introduction

▶ World models: Internal models of how the world works
▶ Two key tasks in world model learning:

▶ Observation Modeling: how the environment transits and is observed.
▶ Reward Modeling: how the task has been progressed.
▶ Provide a unified multi-task view of MBRL.
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▶ Explicit MBRL: Learns an exact duplicate of the environment.
▶ Typically dominated by observation modeling.
▶ Limited by environment complexity (irrelevant details) and model capacity.

▶ Implicit MBRL: Learns only task-centric world models.
▶ Relies solely on reward modeling to achieve value equivalence.
▶ Limited by sparse learning signals from a single scalar reward.

Research Problem
How do model-based RL methods properly exploit the intrinsic

multi-task benefits within world model learning?

▶ Contributions:
▶ A systematic analysis of deficiencies brought by task domination.
▶ HarmonyDream, a simple but effective method to mitigate domination.
▶ Significant improvement of sample efficiency on various domains

Overview of World Model Learning

▶ Optimization objectives:

Observation: Lo(θ) = − log pθ(ot | zt)
Reward: Lr(θ) = − log pθ(rt | zt)
Dynamics: Ld(θ) = KL[qθ(zt | zt−1, at−1, ot)

∥ pθ(ẑt | zt−1, at−1)].

L(θ) = woLo(θ) + wrLr(θ) + wdLd(θ).

▶ Dimension difference: The observation
loss aggregates H×W × C dimensions,
while reward is only a scalar.

Reward Observation Dynamics
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▶ Typical practice: Approximately equal weights wo = wr = wd = 1,
overlooking the imbalanced nature of world model learning.

Our Insight

There exists potential benefits of multi-task learning yet to be exploited.

Dive Into World Model Learning

Finding 1

Leveraging the reward loss by adjusting its coefficient in world model
learning has a great impact on the sample efficiency of model-based agents.
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Finding 2

Domination of observation modeling can result in world models establishing
spurious correlations without realizing incorrect reward predictions.
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Finding 3

Learning signal of world models from rewards alone without observations is
inadequate for sample-efficient model-based learning.

HarmonyDream

Principle

Scale losses to the same constant to harmonize interactions between tasks.
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▶ Harmonious loss:

L(θ, σo, σr , σd) =
∑

i∈{o,r ,d}

1

σi
Li(θ) + log (1 + σi).

▶ Variational approach: Dynamically adjusting σ towards E[L/σ∗] = 1.
▶ Additional rectification: Prevent extremely large loss weights.

Experiment Results

Meta-world RLBench Distracted DMC variants Atari Minecraft

▶ Meta-world & RLBench: Simply adding harmonizers, HarmonyDream shows
superior performance in terms of both sample efficiency and final success rate.

0 10 20
Environment Steps (× )

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e 
(%

)

Lever Pull

0 10 20
Environment Steps (× )

0

20

40

60

80

100
Hammer

0 25 50 75 100
Environment Steps (× )

0

20

40

60

80

100
Push

0 10 20
Environment Steps (× )

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e 
(%

)

Handle Pull Side

0 20 40
Environment Steps (× )

0

20

40

60

80

100
Sweep Into

DreamerV2
HarmonyDream (Ours)

0 25 50 75 100
Environment Steps (× )

0

20

40

60

80

100
Assembly

0 20 40
Environment Steps (× )

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e 
(%

)

Push Button

0 25 50 75 100
Environment Steps (× )

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e 
(%

)

Reach Target

DreamerV2
HarmonyDream (Ours)

▶ Distracted control: HarmonyDream bypasses distractors in observations and
can learn task-centric transitions more easily.
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▶ Video games: HarmonyDream further unleashes the potentials of DreamerV3,
setting a new state of the art on Atari 100k, and greatly improving on Minecraft.
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Applicability

▶ Fine-grained task-relevant observations: Robotic manipulation tasks and video
games require accurately modeling interactions with small objects.

▶ Highly varied task-irrelevant observations: Redundant visual components can
easily distract agents if task-relevant information is not emphasized correctly.

▶ Hybrid of both: More difficult open-world tasks (e.g., Minecraft) can encounter
both, including small target entities and abundant visual details.
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